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Effect of amplitude of walls on thermal and hydrodynamic 
characteristics of laminar flow through an asymmetric 
wavy channel 

Sumit Kumar Mehta a, Sukumar Pati a, László Baranyi b,* 

a Department of Mechanical Engineering, National Institute of Technology Silchar, Silchar, 788010, India 
b Department of Fluid and Heat Engineering, Institute of Energy Engineering and Chemical Machinery, University of Miskolc, 3515, Miskolc- 
Egyetemváros, Hungary   

H I G H L I G H T S  

• Effects of Re and wall amplitude A studied for forced convective flow in a wavy channel. 
• Linearly increasing (LIAC), decreasing (LDAC), constant amplitude (CAC) channels used. 
• For higher Re, average Nu is highest for LIAC, followed by LDAC, then CAC. 
• Performance parameter (PF) used to assess heat transfer and pumping power. 
• For lower Re CAC has highest PF; for higher Re, PF is strongly dependent on A.  

A R T I C L E  I N F O   

Keywords: 
Wavy channel 
Nusselt number 
Performance factor 
Forced convection 

A B S T R A C T   

In this work, we investigate the hydrothermal characteristics for laminar forced convective flow 
of water through sinusoidal asymmetric wavy channel of three types: linearly increasing ampli
tude channel (LIAC), linearly decreasing amplitude channel (LDAC) and constant amplitude 
channel (CAC). The computed velocity and temperature fields are analyzed by varying the 
Reynolds number (Re) and slope (A) of the linearly varying amplitude in the following ranges: 5 ≤
Re ≤ 200 and 0.02≤ A ≤ 0.04. The value of average Nusselt number is almost independent on the 
geometry of the channel at lower values of Re and A. At higher Re values, the average Nusselt 
number is the highest for LIAC followed by LDAC, and CAC. The combined effects of heat transfer 
increase in the wavy channel compared to plane channel and the associated pumping power is 
assessed using performance parameter (PF). For lower Re values the highest PF is obtained for 
CAC. For higher values of Re the PF is the largest for LDAC at A = 0.02 and 0.03, and the value of 
PF for A = 0.04 is the highest for CAC.  

Nomenclature 

A slope of the linearly varying amplitude (-) 
cp specific heat of the fluid (J kg-1K-1) 
ER enhancement ratio (-) 
k thermal conductivity (W m-1 K-1) 

* Corresponding author. 
E-mail addresses: sukumar@mech.nits.ac.in (S. Pati), laszlo.baranyi@uni-miskolc.hu (L. Baranyi).  

Contents lists available at ScienceDirect 

Case Studies in Thermal Engineering 

journal homepage: www.elsevier.com/locate/csite 

https://doi.org/10.1016/j.csite.2022.101796 
Received 21 November 2021; Received in revised form 10 January 2022; Accepted 12 January 2022   

mailto:sukumar@mech.nits.ac.in
mailto:laszlo.baranyi@uni-miskolc.hu
www.sciencedirect.com/science/journal/2214157X
https://www.elsevier.com/locate/csite
https://doi.org/10.1016/j.csite.2022.101796
https://doi.org/10.1016/j.csite.2022.101796
https://doi.org/10.1016/j.csite.2022.101796
http://creativecommons.org/licenses/by-nc-nd/4.0/


Case Studies in Thermal Engineering 31 (2022) 101796

2

L inlet half height of the channel (m) 
Nu local Nusselt number (-) 
Nu average Nusselt number (-) 
n dimensionless outward normal to the wall (-) 
p pressure (Pa) 
PF performance factor (-) 
PR pressure ratio (-) 
Re Reynolds number (-) 
S(x) profile of the wavy wall (m) 
T temperature (K) 
u, v two-dimensional velocity components (m/s) 
x, y dimensional axial and transverse coordinates (m) 

Greek symbols 
θ dimensionless temperature (-) 
μ dynamic viscosity (kg m-1 s-1) 
ρ density of the fluid (kg m-3) 

Acronyms 
CAC Constant amplitude channel 
LDAC Linearly decreasing amplitude channel 
LIAC Linearly increasing amplitude channel  

1. Introduction 

The use of a wavy channel is one of the best methods of achieving heat transfer increase in various fields including solar and process 
plants, heat exchangers, and processes involving polymetric composite manufacturing [1]. Passive and active methods are used for 
heat transfer augmentation for any transport processes [2]. The active methods require external power in addition to the pumping 
power to maintain the enhancement mechanism, while passive techniques mostly consist of changing the surface area introducing 
waviness in the wall [3–6], using baffles [7,8], nanofluid [9–15], and porous media [9,16–18]. The dynamics of flow through a wavy 
channel becomes complicated even for laminar flow because of the formation of flow recirculation zones. Accordingly, a thorough 
understanding in the transport dynamics is of utmost importance in designing thermal systems involving corrugated channels. 

A plethora of articles are available in the literature on laminar forced convection flow through corrugated channels, investigating 
the effect of corrugation geometry on the heat transfer enhancement with minimum pressure drop. Rush et al. [19] analyzed laminar 
forced convection in sinusoidal converging-diverging channel and found a local enhancement in heat transfer with Reynolds number 
Re. Wang and Chen [20] analyzed the effect of amplitude of the sinusoidal wall on heat transfer increase and frictional losses for 
laminar flow. Naphon [21–24] conducted a number of numerical and experimental works to analyze the forced convection hydro
thermal transport in corrugated channels. Akbarzadeh et al. [25] studied the thermo-hydraulic characteristics for laminar forced 
convection through three types of corrugated channels: triangular, trapezoidal, and sinusoidal. They found that at higher Re the 
corrugated channel is advantageous in terms of higher heat transfer rate. Rashidi et al. [26] numerically investigated the effect of 
geometrical parameters of the sinusoidal wavy channel on the thermo-hydraulic performance and total entropy generation for tur
bulent flow. Shubham et al. [27] analyzed the effect of fluid rheology on the thermo-hydraulic performance for laminar forced 
convection in wavy channel. Pati et al. [28] conducted a comparative assessment of the thermo-fluidic performance in two wavy 
channels for laminar forced convection. Ermagan and Rafee [29,30] investigated the effect of superhydrophobic wall on the 
thermo-hydraulic performance of wavy microchannel heat sink and suggested that lower amplitude and higher wavelength is suitable 
for better performance. Several works [31–38] analyzed the effect of geometrical parameters on the heat transfer augmentation in 
corrugated channels. Mehta and Pati [39] investigated the thermo-hydraulic performance for triangular corrugated channel in laminar 
regime. Alawadhi [40] analyzed the effect of linearly increasing amplitude in the entrance region of a sinusoidal wavy channel on the 
heat transfer and pressure drop for laminar forced convection and found that such type of channel is more effective for heat transfer at 
higher amplitude and lower Reynolds number. It has also been found that the increase in the entrance length of increasing amplitude 
decreases the pressure drop. Nandi and Chattopadhyay [41,42] investigated the heat transfer characteristics for the pulsating forced 
convective flow through a wavy microchannel in the laminar regime by varying the Reynolds number and Strouhal number. Tiwari 
and Moharana [43,44] studied the thermo-hydraulic performance for the conjugate heat transfer through the raccoon and wavy 
microchannel. They found that the performance of the raccoon microchannel is better than the wavy and plane microchannels. 
Recently a number of studies have been conducted to investigate the heat transfer characteristics for flow through wavy channels, 
including nanofluid [9,10,45–49], porous materials [9], magnetic field [10], and ribs [50]. 

Although there are several research articles in the literature analyzing the thermo-hydraulic performance for laminar flow in wavy 
channel, most of the works deal with channels with constant amplitude. The efficacy of the varying amplitude of the wall of wavy 
channel on the hydrothermal performance is not yet explored. Accordingly, a comprehensive numerical investigation is performed to 
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assess the efficacy of the varying amplitude of the wall of wavy channel on the hydrothermal performance for laminar flow regime. A 
comparison on the hydrothermal performance is made for the linearly increasing- and decreasing amplitude channel with the constant 
amplitude wavy channel. 

2. Theoretical formulation 

Forced convective laminar flow of water (Prandtl number = 6.93) through one of three types of sinusoidal asymmetric wavy 
channels is considered as shown in Fig. 1(a)-(c): a linearly increasing amplitude channel (LIAC), a linearly decreasing amplitude 
channel (LDAC), and a constant amplitude channel (CAC). The phase difference of the top and bottom walls is 180∘. The profiles of the 
top wall are as follows: 

For LIAC: 

S(x) = L + A(x − 3L)sin(2π(x − 3L)/L ). (1) 

For LDAC: 

S(x) = L − A((x − 3L) − 12L )sin(2π(x − 3L)/L ). (2) 

For CAC: 

S(x) = L + (AmL)sin(2π(x − 3L)/L ), (3)  

where the linearly increasing and decreasing amplitudes are A(x − 3L) and A((x − 3L) − 12L), respectively. The amplitude (AmL) for 
the CAC is calculated by considering the same total flow passage area of the wavy part of the channel. The range of the slope of linearly 
varying amplitude A investigated is 0.02≤ A≤ 0.04. The lengths of the inlet and outlet adiabatic flat part are 3L and 5L, respectively. 
The wavelength of the wavy channel is constant (=L). The length of the isothermal part of wavy walls is 12L, as shown in Fig. 1. The 
parameter ranges are the same as in Refs. [3,20,39]. The internal heat generation and the radiation heat transfer are neglected. The 
steady flow of incompressible constant-property fluid is considered [3,20]. 

The governing transport equations are the conservation of mass, momentum, and energy; the corresponding mathematical forms 
are written as [3,20]:Continuity equation 

∂u
∂x

+
∂v
∂y

= 0, (4)  

x-momentum equation 

ρ
[

u
∂u
∂x

+ v
∂u
∂y

]

= −
∂p
∂x

+ μ
(

∂2u
∂x2 +

∂2u
∂y2

)

, (5) 

Fig. 1. Physical domain of the considered wavy channels: (a) linearly decreasing amplitude channel (LDAC), (b) linearly increasing amplitude channel (LIAC), and (d) 
constant amplitude channel (CAC). 
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y-momentum equation 

ρ
[

u
∂v
∂x

+ v
∂v
∂y

]

= −
∂p
∂y

+ μ
(

∂2v
∂x2 +

∂2v
∂y2

)

, (6) 

Energy equation 

u
∂T
∂x

+ v
∂T
∂y

=
k

ρcp

[
∂2T
∂x2 +

∂2T
∂y2

]

. (7) 

The boundary conditions are: 
At inlet: 

u= uinlet, (8a)  

T = Tinlet = 300K, (8b) 

On the walls: 

u= v = 0, (9a)  

∂T
∂y

= 0 for x < 3L, x > 15L (9b)  

T = Tw = 310K for 3L ≤ x ≤ 15L, (9c) 

At outlet: 

p = patm;
∂T
∂x

= 0. (10) 

The local heat transfer is characterized by the local Nusselt number (Nu) defined as [3]: 

Nu= −
∂θ
∂n
. (11) 

Here n is the dimensionless unit outward normal, which is normalized by L, and θ is a dimensionless temperature [3]: 

θ=
(T − Tinlet)

(Tw − Tinlet)
. (12) 

The average Nusselt number is calculated as [3]: 

Nu =

∫15L

3L

Nu dS

∫15L

3L

dS

, (13)  

where S is the arc length along the wavy wall. 
We introduce two parameters: the enhancement ratio (ER) and the pressure drop ratio (PR) to characterize the increment of heat 

transfer rate and the corresponding pressure drop in a wavy channel in comparison with an equivalent straight channel, [3]: 

ER=Nuwavy
/

Nuplane, (14)  

PR = Δpwavy
/

Δpplane. (15) 

The percentage enhancement in heat transfer in a wavy channel compared to that of plane channel is presented by the percentage 
enhancement (PE): 

PE =

(
Nuwavy − Nuplane

)

Nuplane
× 100. (16) 

The combined effects of heat transfer enhancement and the corresponding pressure drop penalty in wavy channel over an 
equivalent plane channel are characterized by the performance factor (PF) [39]: 

PF =
ER

(PR)1/3, (17) 
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Table 1 
Grid independency test for a linearly decreasing amplitude channel (LDAC) at Re = 100.  

A No. of elements Nu  Relative difference (%) 

0.02 12012 5.1123 10.38 
32031 4.9123 6.06 
61243 4.6638 0.70 
112345 4.6312 – 

0.03 15213 5.5727 13.86 
41235 5.1529 5.28 
86095 4.9092 0.308 
134226 4.8941 – 

0.04 18123 5.7688 12.20 
51234 5.2902 2.89 
91234 5.1465 0.103 
151223 5.1412 –  

Fig. 2. (a) Comparison of Nu along the bottom wavy wall with the results of Wang and Chen [20] at Re = 100 and 300 and constant dimensionless amplitude of 0.2. 
(b) Comparison of Nu along a rectangular corrugated wall with the experimental results of Farhanieh et al. [51] for air flow through a rectangular-grooved duct at Re 
= 620. 

Fig. 3. Streamlines at Re = 200 and A = 0.04 for (a) CAC, (b) LDAC and (c) LIAC.  
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3. Numerical method and validation 

A finite element method based numerical solver is used to solve the governing transport equations with the boundary conditions. 
The mesh is non-uniform in the computational domain and dense near the boundary. The Galerkin weighted residual method is used 
for the discretization and system of equations obtained are solved by iteration until the convergence criteria max

⃒
⃒φn+1 − φn

⃒
⃒ /φn ≤ 10− 6 

(φ is a transport variable) are satisfied. The grid independence test has been performed for all geometries, and the grids are finalized for 

Fig. 4. Isotherms at Re = 200 and A = 0.04 for (a) CAC (b) LDAC and (c) LIAC.  

Fig. 5. Variation of Nu at the top wall with (a) LDAC (b) LIAC and (c) CAC for A = 0.04. The top half of the channels are shown in the insets.  
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simulations such that the relative differences in Nu are less than 1% compared to a highly refined mesh. The results of the grid 
independency test for the linearly decreasing amplitude channel (LDAC) are shown in Table 1 at Re = 100. 

We perform extensive validation prior to conduct the simulations. Firstly, the present model is validated with the numerical work of 
Wang and Chen [20] for laminar forced convection in wavy channel as shown in Fig. 2 (a). We perform another validation with the 
experimental results of Farhanieh et al. [51] for air flow through a rectangular-grooved duct as shown in Fig. 2(b). The two com
parisons show a good agreement, thus confirming the accuracy of the solver. 

4. Results and discussion 

The objective of the present work is to analyze the hydrothermal characteristics for flow through a sinusoidal wavy channel of three 
different types: a linearly increasing amplitude channel (LIAC), a linearly decreasing amplitude channel (LDAC), and a constant 
amplitude channel (CAC). The temperature and flow fields are presented for the Reynolds number (Re =(ρuinletL)/μ) in the range of 5≤
Re ≤ 200 [3]. The range of A is 0.02 ≤ A ≤ 004, similar to the ranges in Refs. [3,20,27,28]. 

To study the involved flow physics for different types of wavy channels considered in this study, the streamlines are shown in Fig. 3 
at A = 0.04 and Re = 200. The bulk flow decelerates in LDAC (Fig. 3(a)) due to increase of the effective cross-sectional area of the 
channel in the direction of the flow, leading to adverse pressure gradient, while for LIAC the bulk flow accelerates (Fig. 3(b)) resulting 
in favorable pressure gradient. Beyond a certain Re the flow is attached and detached alternately while flowing through the wavy 
passages in the channel because of the favorable pressure gradient in the converging passage (see Fig. 3(b)) and the adverse pressure 
gradient in the diverging passage (Fig. 3(c)). Beyond a critical value of Re the magnitude of positive pressure gradient in diverging 
conduits increases over the threshold value and the flow gets separated resulting in recirculation zones. At low Re (=5), no recircu
lation zone is formed for CAC, although recirculation zones are formed for LIAC and LDAC for the waves near the outlet and inlet, 
respectively. Moreover, additional recirculation zones are also formed even at lower Reynolds numbers for LIAC and LDAC in the inlet 
and outlet of the corrugated section, respectively. 

The formation of the recirculation zone causes trapping of hot fluid, and the attachment of the primary flow causes higher velocity, 
as well as temperature gradient. To analyze the temperature field of different wavy channels, dimensionless isotherms are shown in 
Fig. 4. It can be seen in the figure that the core zone of the cold fluid for LDAC is shifted towards the upstream direction compared to 
LIAC. This is because of the larger size of recirculation zones in the upstream section for LDAC (see Fig. 3). The effective heat transfer 

Fig. 6. Variation of Nu with Re at (a) A = 0.02, (b) A = 0.03 and (c) A = 0.04.  
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area in the entrance region is the highest for LDAC. Due to the trapping of fluid in the recirculation zones, the temperature of the fluid 
in this zone is relatively high and almost constant. Therefore, the higher values of isotherms occur away from the hot wall for the larger 
recirculation zone. 

To investigate the effect of channel wall geometry on the local heat transfer rate, the variation of local Nusselt number Nu at 
different Re is shown for the three different wavy channels in Fig. 5. The Nu pattern mimics the channel geometry in a sense that there 
is a local maximum and a local minimum in each wave, and their magnitudes are strongly dependent on the wall topology. The values 
of maxima of local Nusselt number increase with Re because of the increased advection, although the minima values of Nu are almost 
independent of Re. This is because the trapping of the hot fluid at higher Re and velocity reduction at low Re leads to lower heat transfer 
rate. It can be seen that the value of the maxima of Nu is the highest for LDAC followed by LIAC and CAC. This is because of the 
combined effects of the higher velocity gradient near the entrance region and the lower bulk fluid temperature at the entrance region 
for LDAC. 

Fig. 6 shows the combined effects of Re and amplitude A on the heat transfer (average Nusselt number (Nu) against Re). It can be 
seen that average Nusselt number is almost independent of the channel geometry at lower Re and A values. However, with the increase 
in Re and A the effect of channel geometry grows. The average Nusselt number is always greater for the wavy channel than for the plane 
channel, even for CAC. The value of average Nusselt number is the highest for LIAC followed by LDAC and CAC. The higher amplitude 
of LIAC near the outlet results in a higher velocity as well as temperature gradients, thus enhancing the heat transfer. The temperature 
of the bulk fluid near the outlet is higher, and thus enhancement in heat transfer is somewhat smaller. It can be seen in Fig. 5 that the 
magnitude of the local maxima of Nu near the outlet for LIAC is smaller than the corresponding maxima near the inlet for LDAC. 
Similarly, the minimum value of local maxima of Nu near the inlet for LIAC is higher than the corresponding maxima value for LDAC 
near the outlet. 

To investigate the efficacy of the wavy channel with respect to the heat transfer enhancement compared to a plane channel, the 
percentage enhancement in heat transfer (PE) is presented in Fig. 7 at different Re. The PE decreases with Re up to a critical value of 
Reynolds number (Recrit) and thereafter increases in the investigated domain for all types of wavy channels. However, for Re < Recrit 
the decrement of PE with Re is smaller for higher values of A. At lower Re the advection is lower, hence the increment in Nu is relatively 
small in this zone. The recirculation region causes trapping of hot fluid and resists the heat transfer in the corresponding region. The 
combined effect causes an overall decrease in PE for lower Re. However, for higher values of Re, the increment of maxima values of Nu 
causes an increase in the PE value. The value of Recrit varies with the channel geometry. For example, for CAC, Recrit = 50 for all A 

Fig. 7. Variation of percentage enhancement of heat transfer (PE) for different types of wavy channels at (a) A = 0.02, (b) A = 0.03 and (c) A = 0.04.  
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values; for LDAC, Recrit = 50 for A = 0.02 and Recrit = 25 for A = 0.03 and 0.04; for LIAC, Recrit = 25 at A = 0.02 and 0.03, and Recrit = 5 
for A = 0.04. For Re < Recrit the PE is the smallest for CAC and it can be even negative for A = 0.02, and hence CAC is not recommended 
for Re < Recrit. The maximum value of PE is achieved for LIAC at the largest Re and A values investigated. The corresponding values at 
Re = 200 are 10.6 %, 24.0 %, and 40.3 % for A = 0.02, 0.03, and 0.04, respectively. 

The variation of pressure drop ratio (PR) with Re is shown in Fig. 8. It is found that PR monotonically increases with Re as the 
pressure drop for the three channels increases with Re more than the pressure drop (frictional loss) for the plane channel. When 
comparing the PR values for different wavy channels we found that PR is the smallest for CAC irrespective of the investigated A values. 
It can be seen that the PR values for both LIAC and LDAC are almost the same for Re < 25, while for Re > 25, the highest value is 
obtained for LIAC. The main factor that determines the pressure drop ratio is the formation of recirculation zone near the outlet section 
(see Fig. 3). The size of recirculation zone for LIAC near the outlet is negligibly small for Re < 25. However, for Re > 25 the size is 
significant to increase the PR and as a result there is an enhancement in the difference in PR with LDAC for which no recirculation zone 
exists near the outlet due to smooth ending of wavy wall near the exit. The size of recirculation zone increases with A causing higher 
frictional losses and thus increases the PR value. 

The heat transfer augmentation in wavy channel is usually achieved at the cost of pressure drop penalty. To study the combined 
effect of the pressure drop and heat transfer enhancement, the performance factor (PF) is analyzed to assess the needed pumping power 
associated with heat transfer enhancement. The variation of PF with Re is presented in Fig. 9 for different types of wavy channels and A 
values. It is found that PF initially decreases reaching a minimum value at a Reynolds number denoted by Re* and increases thereafter 
with Re for all types of wavy channels and A, except for LIAC at A = 0.04. For low values of Re (<Re*), PR is the dominant factor in 
determining the variation of PF in all three channels as the rate of increment in ER with Re is relatively small compared to that of PR. 
For Re > Re* the heat transfer rate is higher and thus ER is the dominant factor except for LIAC at A = 0.04 for which the value of PR is 
relatively high due to the existence of additional recirculation zones near the outlet. For lower Re values the highest PF is obtained for 
CAC. At higher Re values PF is the largest for LDAC at A = 0.02 and 0.03 and PF is the largest for CAC at A = 0.04 in the investigated Re 
domain. 

5. Conclusions 

In this work we investigate the thermo-hydraulic transport characteristics for forced convective flow through three types of wavy 
channels in the laminar regime. The flow and heat transfer rate are studied by linearly varying amplitude (A) and Reynolds number 

Fig. 8. Variation of PR for different types of wavy channels at (a) A = 0.02, (b) A = 0.03 and (c) A = 0.04.  
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(Re) for a linearly increasing amplitude channel (LIAC), a linearly decreasing amplitude channel (LDAC), and constant amplitude 
channel (CAC). The main findings are summarized as follows:  

• The recirculation zones formed in the wavy passages of LIAC, LDAC and CAC play crucial role in augmenting the heat transfer as 
well as pressure drop. A tertiary recirculation region exists in the LIAC and LDAC at an arbitrary value of A in the investigated 
domain. For LIAC additional recirculation zones occur near the channel outlet.  

• The value of average Nusselt number (Nu) is almost independent on the channel geometry at low values of Re and A. At higher Re 
values, Nu is the largest for LIAC followed by LDAC and CAC. The values of percentage enhancement in heat transfer (PE) for LIAC 
at Re = 200 are 10.6 %, 24.0 %, and 40.3 % for A = 0.02, 0.03, and 0.04, respectively.  

• The performance factor (PF) initially decreases with Re reaching a minimum value and increases thereafter with Re for all types of 
wavy channels and A, except for LIAC at A = 0.04. For lower Re values the highest PF is obtained for CAC. For higher values of Re, 
PF is the largest for LDAC at A = 0.02 and 0.03 and the value of PF is the highest for CAC in the investigated Re domain at A = 0.04. 
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