

## Comparison of Viscosity Models for the Simulation of Non-Newtonian Flow in Lid-Driven Cavity

Shreyas Shrestha<sup>1</sup>, Tushar Chourushi<sup>2</sup>, and Chandan Bose<sup>3</sup>

 Aerospace Engineering, IOE, Pulchowk Campus, Tribhuvan University, Nepal
Associate Professor, Department of Aerospace Engineering, MIT Art, Design and Technology University, Pune, Maharashtra 412201, India

<sup>3</sup>Assistant Professor, Aerospace Engineering, College of Engineering and Physical Sciences, The University of Birmingham, Birmingham B15 2TT, UK

September 11, 2025

## **Synopsis**

This research migration project investigates transient simulations of the two-dimensional lid-driven cavity for non-Newtonian fluids using the open-source computational fluid dynamics (CFD) software OpenFOAM. The nonNewtonianIcoFoam solver, for incompressible, laminar, generalized Newtonian flow, is employed to assess the efficacy of four viscosity models: Power-law, Carreau, Carreau–Yasuda, and Casson. The velocity fields are validated against benchmark data from the literature using normalised velocity profiles along the cavity centerline. Simulations at Re = 100 and Re = 400 show that increasing the Reynolds number sharpens near-wall gradients and shifts the velocity peaks toward the walls. The migration uses reference datasets from Li  $et\ al.$  (Power-law) [1], Kim and Reddy (Carreau; Carreau–Yasuda) [2], and Neofytou (Casson) [3].

**Keywords:** Non-Newtonian fluids; Power-law fluids; Carreau model; Carreau—Yasuda model; Casson model; Lid-driven cavity; OpenFOAM.

## References

[1] Q. Li, N. Hong, B. Shi, and Z. Chai, "Simulation of Power-Law fluid flows in Two-Dimensional square cavity using Multi-Relaxation-Time Lattice Boltzmann method," *Communications in Computational Physics*, vol. 15, no. 1, pp. 265–284, 8 2013. [Online]. Available: https://doi.org/10.4208/cicp.160212.210513a

- [2] N. Kim and J. N. Reddy, "A spectral/hp least-squares finite element analysis of the Carreau–Yasuda fluids," *International Journal for Numerical Methods in Fluids*, vol. 82, no. 9, pp. 541–566, 2 2016. [Online]. Available: https://doi.org/10.1002/fld.4230
- [3] P. Neofytou, "A 3rd order upwind finite volume method for generalised Newtonian fluid flows," *Advances in Engineering Software*, vol. 36, no. 10, pp. 664–680, 5 2005. [Online]. Available: https://doi.org/10.1016/j.advengsoft.2005.03.011