
FOSSEE, IIT Bombay
OpenFOAM GUI
July 30, 2025

DEVELOPMENT OF NODE-BASED OPENFOAM CASE
GENERATOR IN PYQT FOR OPENFOAM GUI

Navya Sai Sadu1, Dr. Chandan Bose2, Mr. Diptangshu Dey3

1 Undergraduate student, Department of Computer Science and Engineering, Ace Engineering
College, Ghatkesar, Telangana, India

2 Assistant Professor, University of Birmingham
3 Research Assistant, OpenFOAM GUI, FOSSEE, IIT Bombay

Abstract

The generation of OpenFOAM cases traditionally requires the manual creation and editing of
complex text-based configuration files, presenting significant barriers to new users and creat-
ing the potential for errors. This project presents the PyVNT Node Editor, a professional
desktop application that transforms OpenFOAM case creation through an intuitive node-based
visual programming interface.
Built using PyQt6 and implementing a robust Model-View-Controller architecture, the appli-
cation provides a comprehensive graphical environment where users create OpenFOAM con-
figurations by connecting visual nodes representing parameters, containers, and output files.
The system seamlessly integrates with the PyVNT library through lazy evaluation optimization,
ensuring efficient memory usage and real-time validation of OpenFOAM configurations.
Key features include drag-and-drop node creation, intelligent connection validation, compre-
hensive case loading capabilities, and optimized file generation workflows. The application
supports both individual file generation and complete OpenFOAM directory structure creation
while maintaining full compatibility with existing OpenFOAM workflows.
The implementation demonstrates significant improvements in usability and accessibility for
OpenFOAM case generation, successfully bridging the gap between complex CFD require-
ments and user-friendly interfaces. This work establishes a new standard for visual OpenFOAM
case creation tools and provides a solid foundation for future computational fluid dynamics soft-
ware development.

Keywords: OpenFOAM, PyQt6, Node Editor, Visual Programming, CFD, PyVNT

1

FOSSEE, IIT Bombay OpenFOAM GUI

Contents

1 Introduction 3
1.1 Model-View-Controller Design . 4
1.2 Node-Based Interface Architecture . 6
1.3 PyVNT Integration Layer . 7

2 Implementation Details 7
2.1 Core Application Framework . 7
2.2 Node System Implementation . 8
2.3 Socket and Edge System . 9
2.4 Case Loading and Parsing . 9
2.5 Output Generation System . 10
2.6 PyVNT Integration and Lazy Evaluation . 11

3 User Interaction and Workflow 12
3.1 Visual Programming Interface . 12
3.2 File Generation Process . 13
3.3 Case Management . 13

4 Results and Demonstrations 13

5 Conclusion 15

List of Figures
1 System Architecture Overview . 4
2 MVC Architecture . 5
3 Nodes . 6
4 p file . 14

2

FOSSEE, IIT Bombay OpenFOAM GUI

1. Introduction
OpenFOAM is an open-source computational fluid dynamics (CFD) toolbox used in academia
and industry to solve continuum mechanics problems. It requires users to manually create and
edit complex configuration files in text format. This manual process is time-consuming, error-
prone, and presents a significant barrier for new users entering the CFD field.
The PyVNT Node Editor addresses these challenges by providing a professional, node-
based graphical interface for creating, editing, and generating OpenFOAM case files with the
help of PyQt Desktop Application. This application represents a significant advancement
over previous prototype implementations, offering Visual Programming Interface, Professional
Grade Features, Seamless Integration upon PyVNT API and Flexible Workflow.
The application follows modern software engineering principles, implementing a clean Model-
View-Controller architecture that separates concerns and ensures maintainability. The node-
based interface leverages visual programming concepts to make complex CFD configurations
accessible to users of all skill levels.

3

FOSSEE, IIT Bombay OpenFOAM GUI

(a) Node Categories and Types

(b) Application Architecture and Data Flow

Figure 1: System Architecture Overview

1.1 Model-View-Controller Design
The PyVNT Node Editor implements a sophisticated Model-View-Controller (MVC) ar-
chitecture that provides clear separation of concerns:
Model Layer (PyVNT Objects):

• PyVNT library serves as the underlying data model

• Handles OpenFOAM file parsing and object representation

• Maintains configuration state and validation logic

• Provides API for file generation and case management

View Layer (Graphical Interface):

• PyQt6-based user interface components

• Custom graphical nodes for visual representation

• Interactive canvas with zoom, pan, and selection capabilities

4

FOSSEE, IIT Bombay OpenFOAM GUI

• Real-time visual feedback for user operations

Controller Layer (Application Logic):

• Event handling and user interaction management

• Command pattern implementation for undo/redo operations

• Node connection and validation logic

• File I/O operations and case generation coordination

This architecture ensures that changes to the underlying data model automatically propagate to
the visual interface, while user interactions are properly validated and processed through the
controller layer.

Figure 2: MVC Architecture

5

FOSSEE, IIT Bombay OpenFOAM GUI

1.2 Node-Based Interface Architecture
The application employs a sophisticated node-based interface that translates OpenFOAM con-
cepts into visual programming elements:
Node Categories:

• Container Nodes: Represent OpenFOAM dictionaries and structural elements

• Parameter Nodes: Handle specific data types (integers, floats, strings, vectors, tensors)

• Output Nodes: Manage file generation and case assembly

Figure 3: Nodes

Connection System:

• Socket-based communication between nodes

• Type-safe connections with validation

• Visual feedback for connection states

• Automatic routing algorithms for edge visualization

Data Flow:

• Unidirectional data flow from parameter nodes to container nodes to output nodes

• Real-time validation of node connections

• Efficient propagation of changes through the node graph

6

FOSSEE, IIT Bombay OpenFOAM GUI

1.3 PyVNT Integration Layer
The application integrates seamlessly with the PyVNT library through a dedicated abstraction
layer:
Parser Integration:

• Automatic conversion of OpenFOAM files to node structures

• Support for complex dictionary hierarchies

• Preservation of OpenFOAM syntax and formatting requirements

Object Mapping:

• Direct mapping between graphical nodes and PyVNT objects through getPyVNTObject()
method

• Bidirectional synchronization of data with lazy evaluation optimization

• Validation of object integrity during editing

• On-demand object construction to minimize memory footprint

Generation Pipeline:

• Optimized workflow using lazy evaluation to eliminate duplicate file generation

• PyVNT object construction through getPyVNTObject() method calls

• Intelligent categorization of files into OpenFOAM directory structures

• Comprehensive error handling and status reporting

• Deferred object creation until actual file generation is required

2. Implementation Details

2.1 Core Application Framework
The application is built on a robust PyQt6 framework with the following key components:
Main Window (main_window.py):

• Central application orchestration

• Menu system and toolbar management

• Status bar and progress indication

• Window state management and persistence

Editor Scene (editor_scene.py):

• Grid-based canvas for node placement

• Scene management and coordinate system

7

FOSSEE, IIT Bombay OpenFOAM GUI

• Background rendering and visual feedback

• Node and edge lifecycle management

Editor View (editor_view.py):

• Interactive viewport with zoom and pan capabilities

• Mouse and keyboard event handling

• Selection and manipulation tools

• View state persistence and restoration

2.2 Node System Implementation
The node system is implemented through a hierarchical class structure based on the base graph-
ical node class:

1 class BaseGraphicalNode:
2 def __init__(self):
3 self.scene = None
4 self.sockets = []
5 self.input_sockets = []
6 self.output_sockets = []
7 self.edges = []
8

9 def get_pyvnt_object(self):
10 """Override in subclasses to return PyVNT object"""
11 raise NotImplementedError("Subclasses must implement")
12

13 def add_socket(self, socket_type, data_type):
14 """Add input/output socket for connections"""
15 socket = Socket(self, socket_type, data_type)
16 self.sockets.append(socket)
17 return socket
18

19 def serialize(self):
20 """Serialize node data for save/load"""
21 return {
22 ’type’: self.__class__.__name__,
23 ’position’: [self.pos().x(), self.pos().y()],
24 ’properties’: self.get_properties()
25 }

Listing 1: Base Graphical Node Structure

Specialized Node Types:

• Container Nodes: Node_C (dictionary containers), Key_C (key-value pairs)

• Parameter Nodes: Int_P, Flt_P, Str_P, Vector_P, Tensor_P, Dim_Set_P,
Enm_P, List_CP

• Output Nodes: Output (file generation), Case Folder (directory structure)

8

FOSSEE, IIT Bombay OpenFOAM GUI

2.3 Socket and Edge System
The connection system uses sockets and edges to enable data flow between nodes:

1 class Socket:
2 def __init__(self, node, socket_type, data_type, position=0):
3 self.node = node
4 self.socket_type = socket_type # INPUT or OUTPUT
5 self.data_type = data_type
6 self.position = position
7 self.edges = []
8

9 def can_connect_to(self, other_socket):
10 """Check if connection is valid"""
11 if self.socket_type == other_socket.socket_type:
12 return False
13 return self.data_type.is_compatible(other_socket.data_type)
14

15 def connect_to(self, other_socket):
16 """Create edge connection"""
17 if self.can_connect_to(other_socket):
18 edge = Edge(self, other_socket)
19 self.edges.append(edge)
20 other_socket.edges.append(edge)
21 return edge
22 return None

Listing 2: Socket Implementation

1 class Edge:
2 def __init__(self, start_socket, end_socket):
3 self.start_socket = start_socket
4 self.end_socket = end_socket
5 self.scene = start_socket.node.scene
6

7 def update_positions(self):
8 """Update edge visual representation"""
9 start_pos = self.start_socket.get_scene_position()

10 end_pos = self.end_socket.get_scene_position()
11 self.update_path(start_pos, end_pos)
12

13 def remove(self):
14 """Clean up edge connections"""
15 self.start_socket.edges.remove(self)
16 self.end_socket.edges.remove(self)
17 if self.scene:
18 self.scene.removeItem(self)

Listing 3: Edge Connection System

2.4 Case Loading and Parsing
The application provides comprehensive support for loading existing OpenFOAM cases:

1 class CaseLoader:
2 def __init__(self, parser):
3 self.parser = parser
4 self.node_converter = NodeConverter()
5

9

FOSSEE, IIT Bombay OpenFOAM GUI

6 def load_case_directory(self, case_path):
7 """Load complete OpenFOAM case directory"""
8 case_files = self._discover_case_files(case_path)
9 nodes = []

10

11 for file_path in case_files:
12 try:
13 # Parse using PyVNT
14 pyvnt_tree = self.parser.parse_file(file_path)
15

16 # Convert to visual nodes
17 visual_nodes = self.node_converter.convert_tree(pyvnt_tree)
18 nodes.extend(visual_nodes)
19

20 except Exception as e:
21 print(f"Failed to load {file_path}: {e}")
22

23 return nodes
24

25 def _discover_case_files(self, case_path):
26 """Find OpenFOAM files in case directory"""
27 foam_files = []
28 for root, dirs, files in os.walk(case_path):
29 for file in files:
30 if self._is_openfoam_file(file):
31 foam_files.append(os.path.join(root, file))
32 return foam_files

Listing 4: Case Loader Implementation

Loading Process:

1. File system scanning and OpenFOAM structure detection

2. Progressive parsing with status indication

3. Object graph construction and validation

4. Node creation and automatic layout

5. Connection establishment and verification

2.5 Output Generation System
The application implements an optimized output generation system:

1 class OutputNode(BaseGraphicalNode):
2 def __init__(self):
3 super().__init__()
4 self.output_path = ""
5 self.add_input_socket("data", "PyVNTObject")
6

7 def generate_files(self):
8 """Generate OpenFOAM files from connected nodes"""
9 try:

10 # Validation phase
11 connected_objects = self._get_connected_objects()
12

13 # Object construction phase

10

FOSSEE, IIT Bombay OpenFOAM GUI

14 pyvnt_objects = []
15 for node in connected_objects:
16 pyvnt_obj = node.get_pyvnt_object()
17 if pyvnt_obj:
18 pyvnt_objects.append(pyvnt_obj)
19

20 # File generation phase
21 for obj in pyvnt_objects:
22 file_path = os.path.join(self.output_path, obj.name)
23 obj.write_to_file(file_path)
24

25 return f"Generated {len(pyvnt_objects)} files successfully"
26

27 except Exception as e:
28 return f"Generation failed: {str(e)}"
29

30 def _get_connected_objects(self):
31 """Get all nodes connected to input sockets"""
32 connected_nodes = []
33 for socket in self.input_sockets:
34 for edge in socket.edges:
35 source_node = edge.start_socket.node
36 connected_nodes.append(source_node)
37 return connected_nodes

Listing 5: Output Node Generation

2.6 PyVNT Integration and Lazy Evaluation
The application implements sophisticated PyVNT integration with performance optimized lazy
evaluation:
Lazy Evaluation System:

• On-Demand Object Creation: PyVNT objects are created only when needed through
getPyVNTObject() method calls

• Memory Optimization: Reduces memory footprint by avoiding premature object instan-
tiation

• Performance Enhancement: Minimizes computational overhead during interactive editing

• Dependency Tracking: Maintains dependency graphs to determine when objects need
regeneration

1 class BaseGraphicalNode:
2 def __init__(self):
3 self._pyvnt_object = None
4 self._needs_rebuild = True
5 self.dependencies = []
6

7 def get_pyvnt_object(self):
8 """Lazy evaluation of PyVNT objects"""
9 if self._needs_rebuild or self._pyvnt_object is None:

10 self._pyvnt_object = self._build_pyvnt_object()
11 self._needs_rebuild = False
12 return self._pyvnt_object

11

FOSSEE, IIT Bombay OpenFOAM GUI

13

14 def _build_pyvnt_object(self):
15 """Override in subclasses"""
16 raise NotImplementedError("Subclasses must implement")
17

18 def mark_dirty(self):
19 """Mark object as needing rebuild"""
20 self._needs_rebuild = True
21 for dependent in self.dependents:
22 dependent.mark_dirty()

Listing 6: Lazy Evaluation Implementation

Integration Benefits:

• Seamless Workflow: Users work with visual nodes while PyVNT handles OpenFOAM
specifics

• Type Safety: PyVNT validation ensures generated files conform to OpenFOAM standards

• Performance: Lazy evaluation prevents unnecessary object creation during editing

• Consistency: All nodes use standardized PyVNT object interface

3. User Interaction and Workflow

3.1 Visual Programming Interface
The application provides an intuitive visual programming environment:
Node Creation:

• Drag nodes from the library panel to the canvas

• Automatic placement and alignment assistance

• Context-sensitive node suggestions

• Duplicate detection and prevention

Node Connection:

• Click and drag from output sockets to input sockets

• Visual connection preview during dragging

• Type compatibility validation

• Automatic connection routing and optimization

Node Configuration:

• In-place parameter editing

• Property panels for advanced configuration

• Real-time validation feedback

• Context-sensitive help and documentation

12

FOSSEE, IIT Bombay OpenFOAM GUI

3.2 File Generation Process
The application implements a streamlined file generation workflow:
Phase 1: Node Graph Construction

• Users create and connect nodes to define case structure

• Real-time validation ensures correctness

• Visual feedback indicates connection status

Phase 2: Validation and Optimization

• System validates complete node graph through recursive getPyVNTObject() calls

• Identifies missing connections or invalid configurations using PyVNT validation

• Optimizes object hierarchy for efficient generation with lazy evaluation

• Caches validated PyVNT objects to avoid redundant computation

Phase 3: Output Generation

• Generates files based on validated PyVNT object structure

• Uses PyVNT serialization for proper OpenFOAM format compliance

• Provides progress indication and status updates through PyVNT callbacks

• Reports generation results and file locations with PyVNT object validation status

3.3 Case Management
The application supports comprehensive case management features including case loading, edit-
ing, and export capabilities with full PyVNT integration for maintaining OpenFOAM compati-
bility.

4. Results and Demonstrations
The application successfully generates standard OpenFOAM case files:

13

FOSSEE, IIT Bombay OpenFOAM GUI

Figure 4: p file

The PyVNT Node Editor demonstrates:

• Successful parsing and visualization of OpenFOAM case files

• Intuitive node-based interface for case modification

• Reliable file generation with proper OpenFOAM formatting

• Efficient memory management through lazy evaluation

• Comprehensive validation and error reporting

14

FOSSEE, IIT Bombay OpenFOAM GUI

1 FoamFile
2 {
3 format ascii;
4

5 class volScalarField;
6

7 object p;
8 }
9

10 dimensions [0 1 -1 0 0 0 0];
11

12 internalField uniform 1e-06;
13

14 boundaryField
15 {
16 movingWall
17 {
18 type zeroGradient;
19 }
20

21 fixedWalls
22 {
23 type zeroGradient;
24 }
25

26 frontAndBack
27 {
28 type empty;
29 }
30 }

Listing 7: Generated p file

5. Conclusion
The PyVNT Node Editor represents a significant advancement in OpenFOAM case gen-
eration tools. By providing a professional, node-based interface, the application successfully
addresses the primary challenges faced by OpenFOAM users.
It demonstrates that sophisticated graphical interfaces can significantly improve the usability
of complex engineering software while maintaining full compatibility with existing workflows.
This project establishes a standard for OpenFOAM case generation tools and provides a solid
foundation for the computational fluid dynamics software.

15

FOSSEE, IIT Bombay OpenFOAM GUI

Acknowledgements
I would like to express my sincere gratitude to Dr. Chandan Bose, Mr. Diptangshu Dey,
and the entire FOSSEE team at IIT Bombay for their continuous support and guidance in the
development of the PyVNT Node Editor project. Their expertise in software development
and computational fluid dynamics has been instrumental in creating this professional tool for
OpenFOAM case generation.
I also acknowledge the contributions of previous fellowship participants who laid the founda-
tion for this project through their work on the initial OpenFOAM GUI prototypes and API
development.
This project represents a significant evolution from the initial proof-of-concept implementa-
tions to a fully functional, professional-grade application that addresses the real-world needs of
OpenFOAM users.

References
1. The OpenFOAM Foundation https://openfoam.org/

2. Riverbank Computing. Reference Guide PyQt Documentation v6.5.1. https://www.
riverbankcomputing.com/static/Docs/PyQt6/

3. OpenFOAM v9 User Guide - 4.2 Basic input/output file format https://doc.cfd.
direct/openfoam/user-guide-v9/basic-file-format

4. Node Editor in Python using PyQt5
https://gitlab.com/pavel.krupala/pyqt-node-editor

5. PyVNT Repository’s used branch https://github.com/FOSSEE/pyvnt/tree/
YashSuthar_sem_intern_2025

16

https://openfoam.org/
https://www.riverbankcomputing.com/static/Docs/PyQt6/
https://www.riverbankcomputing.com/static/Docs/PyQt6/
https://doc.cfd.direct/openfoam/user-guide-v9/basic-file-format
https://doc.cfd.direct/openfoam/user-guide-v9/basic-file-format
https://gitlab.com/pavel.krupala/pyqt-node-editor
https://github.com/FOSSEE/pyvnt/tree/YashSuthar_sem_intern_2025
https://github.com/FOSSEE/pyvnt/tree/YashSuthar_sem_intern_2025

	Introduction
	Model-View-Controller Design
	Node-Based Interface Architecture
	PyVNT Integration Layer

	Implementation Details
	Core Application Framework
	Node System Implementation
	Socket and Edge System
	Case Loading and Parsing
	Output Generation System
	PyVNT Integration and Lazy Evaluation

	User Interaction and Workflow
	Visual Programming Interface
	File Generation Process
	Case Management

	Results and Demonstrations
	Conclusion

