FOSSEE, IIT Bombay
OpenFOAM Case Study Project
July 30, 2025 e d

T~
=0

ol

A p|
t e r
c ation

OpenFOAM Case Generation and Traversal
using LLMs

Vedant Dubey', Suyash Mishra?, Prof. Chandan Bose® and Mr. Diptangshu Dey*

1 B.Tech - Electronics and Communications Technology

National Institute of Technology, Raipur

2 Department of Electronics and Communications Engineering

Indian Institute of Information Technology, Manipur

3 Department of Aerospace Engineering

Indian Institute of Technology, Bombay

4 FOSSEE Project
Indian Institute of Technology, Bombay

Abstract

OpenFOAM is a widely used open-source toolbox for computational fluid dynamics, but its
manual configuration process—requiring the precise editing of numerous complex files—creates
significant barriers for users. This paper presents Py Vnt, an artificial intelligence-driven toolkit
developed to automate and simplify OpenFOAM case setup and management. PyVnt com-
prises two main components: FoamGen, a command-line utility that generates case files from
natural language prompts using large language models, and a Bidirectional Converter that
enables seamless transformation between OpenFOAM dictionaries and programmable tree
structures. The system incorporates a retrieval-augmented generation approach, leveraging
a curated knowledge base of over 800 validated case files to ensure contextually accurate out-
puts. A web interface built with Flask and real-time interaction via SocketlO further enhance
user accessibility. Comprehensive testing demonstrates that PyVnt reduces setup time by 75—
80% and supports a wide range of workflows, making advanced simulations more accessible
for educational, research, and industrial users.
Keywords: OpenFOAM, LLM, AI automation, CFD case generation, RAG system



OpenFOAM LLM FOSSEE, IIT Bombay

1 Introduction

Internal Combustion (IC) engines are widely used in automotive, marine, and power generation ap-
plications due to their high efficiency, reliability, and cost-effectiveness. Similarly, Computational
Fluid Dynamics (CFD) has become an indispensable tool in modern engineering, enabling the nu-
merical simulation of complex fluid flow phenomena, heat transfer, and multiphysics interactions.
Among the various CFD platforms available, OpenFOAM stands out as a powerful open-source
toolbox that offers unprecedented flexibility and extensibility for solving diverse engineering prob-
lems.

OpenFOAM operates through a complex ecosystem of solvers, utilities, and configuration files
that must be precisely coordinated to achieve successful simulations. The platform supports a vast
range of applications, from simple incompressible flows to complex multiphase combustion sce-
narios, each requiring specific solver configurations, boundary conditions, and numerical schemes.
However, this flexibility comes at the cost of complexity, as users must navigate through 10-15
different dictionary files, each with its own syntax requirements and parameter dependencies.

The traditional approach to OpenFOAM case setup involves manual editing of multiple config-
uration files including controlDict for simulation control parameters, fvSchemes for numerical
discretization schemes, fvSolution for solver settings and convergence criteria, and various field
initialization files. This process requires deep understanding of both the underlying physics and
OpenFOAM’s specific syntax conventions, creating substantial barriers for new users and even
experienced practitioners working outside their primary domain of expertise.

Recent advances in artificial intelligence, particularly Large Language Models (LLMs) and Retrieval-
Augmented Generation (RAG) systems, present unprecedented opportunities to automate and sim-
plify complex technical workflows. These technologies have demonstrated remarkable capabilities
in understanding natural language descriptions of technical requirements and generating structured
outputs that conform to specific formatting conventions.

1.1 Problem Statement

This computational study investigates the development and implementation of PyVnt, an Al-driven
toolkit designed to automate OpenFOAM case generation and management. The primary objec-
tive is to characterize the system’s performance in translating natural language descriptions of CFD
problems into complete, executable OpenFOAM case directories. The study focuses on analyzing
critical performance metrics including generation accuracy, setup time reduction, and system reli-
ability across diverse simulation scenarios ranging from fundamental fluid mechanics problems to
complex multiphysics applications.

Special emphasis is placed on resolving the integration challenges between modern LLM capabil-
ities and the rigid structural requirements of OpenFOAM configuration files. The analysis quan-
tifies key metrics such as syntax accuracy, semantic correctness, and cross-file consistency, while
identifying the system’s limitations and potential areas for improvement. This research provides
fundamental insights into the practical application of Al technologies for CFD workflow automa-
tion.



OpenFOAM LLM FOSSEE, IIT Bombay

2 Governing Equations

The theoretical foundation of PyVnt rests on the integration of natural language processing capa-
bilities with domain-specific knowledge of computational fluid dynamics principles. While PyVnt
does not directly solve fluid dynamics equations, it generates configurations for systems that do
solve these fundamental equations, requiring deep understanding of their mathematical structure
and physical significance.

The Navier-Stokes equations form the cornerstone of most CFD simulations supported by Py Vnt:

Continuity Equation (mass conservation):

ap B
§+V-(pu)—0 (1)

Where p is the density of the fluid (in kg/m?®), u is the velocity vector (in m/s), and V - (pu)
represents the net mass flux divergence.

Momentum Equation:

0
% = —Vp+uViu+F, 2)

Where p is the thermodynamic pressure (in Pa), 1 is the dynamic viscosity (in Pa-s), V?u represents
viscous momentum diffusion, and F';, denotes body forces.

Energy Equation:
I(pC,T)

5 V(O Tu) = —p(V - ) + oy, G)

Where C, is the specific heat at constant volume (in J/kg-K), 7' is temperature (in K), and ¢,
represents viscous dissipation.

PyVnt’s knowledge base incorporates understanding of these equations’ discretization, boundary
condition requirements, and solver-specific implementations to generate physically meaningful
and numerically stable configurations.

3 System Architecture

PyVnt’s architecture follows a modular design principle that ensures scalability, maintainability,
and extensibility across diverse CFD applications. The system comprises five interconnected lay-
ers, each serving specific functions while maintaining loose coupling to facilitate independent
development and testing.

3.1 Data Layer

The Data Layer serves as the foundation of PyVnt’s knowledge-driven approach, hosting a com-
prehensive repository of over 800 validated OpenFOAM case files. This curated database encom-
passes diverse simulation scenarios including:



OpenFOAM LLM FOSSEE, IIT Bombay

* Laminar and turbulent flow configurations for both incompressible and compressible condi-
tions

* Heat transfer applications including conjugate heat transfer, radiation modeling, and natural
convection

* Multiphase flow systems utilizing Volume of Fluid (VOF), Euler-Euler, and Euler-Lagrange
methodologies

* Combustion modeling scenarios covering premixed, non-premixed, and diesel spray appli-
cations

* Lagrangian particle tracking implementations

* Advanced simulation techniques including Large Eddy Simulation (LES) and Direct Numer-
ical Simulation (DNS)

The knowledge base undergoes systematic preprocessing through FAISS indexing and embedding
generation using the BAAI/bge-small-en model. This sophisticated approach enables efficient
similarity searches based on semantic understanding rather than simple keyword matching.

3.2 Processing Layer

The Processing Layer handles the critical transformation between OpenFOAM’s native dictionary
format and PyVnt’s internal tree representation. Key components include:

Parser Module: Implements robust parsing algorithms capable of handling OpenFOAM’s com-
plex nested dictionary structures while preserving data type information and hierarchical relation-
ships.

Converter Module: Transforms parsed dictionary data into Py Vnt tree structures using the anytree
library, incorporating comprehensive type validation and consistency checking mechanisms.

3.3 Al Layer

The Al Layer represents the core intelligence of PyVnt, integrating multiple Large Language Mod-
els through carefully orchestrated API connections. The system supports various model architec-
tures including Meta-Llama, Mistral, and Google Gemini, each optimized for specific aspects of
the generation process.

RAG Pipeline: Implements sophisticated retrieval-augmented generation using cosine similarity
for top-k relevant case selection, ensuring that generated outputs are grounded in validated exam-
ples from the knowledge base.

Prompt Engineering: Incorporates advanced techniques including context injection, few-shot
learning, and domain-specific terminology handling to optimize model performance for CFD ap-
plications.



OpenFOAM LLM FOSSEE, IIT Bombay

4 Implementation Details

4.1 FoamGen: AI-Powered Case Generation

FoamGen serves as the primary interface for natural language to OpenFOAM case generation,
implementing a sophisticated query processing pipeline:

def generate_openfoam_case (query, config):

mwmnn

Generate complete OpenFOAM case from natural language query
mman

spinner = LoadingSpinner ("Processing CFD requirements")
spinner.start ()

try:
# Retrieve relevant cases from knowledge base
relevant_cases = rag_retrieval (query, top_k=5)

# Generate case configuration

response = 1llm_generate (
query=query,
context=relevant_cases,
model=config.model,
temperature=0.7

# Validate generated configuration
validation_result = validate_case (response)

spinner.stop ()
return response, validation_result

except Exception as e:
spinner.stop ()
logger.error (f"Generation failed: {e}")
return None, None

Listing 1: FoamGen core generation function

4.2 Bidirectional Converter Implementation

The Bidirectional Converter enables seamless transformation between OpenFOAM dictionaries
and PyVnt tree structures:

def convert_dict_to_pyvnt (openfoam_dict, context):
mman

Convert OpenFOAM dictionary to PyVnt tree structure

mwmmnn

prompt = funn



OpenFOAM LLM FOSSEE, IIT Bombay

Convert the following OpenFOAM dictionary to PyVnt format:

Context: {context}
Dictionary: {openfoam_dict}

Generate valid PyVnt tree structure with proper node types

and property definitions.
wmnn

loader = LoadingIndicator ("Converting to PyVnt format")
loader.start ()

try:
response = gemini_model.generate_content (prompt)
pyvnt_code = extract_code_blocks (response.text)

# Validate PyVnt syntax
syntax_check = validate_pyvnt_syntax (pyvnt_code)

loader.stop ()
return pyvnt_code, syntax_check

except Exception as e:
loader.stop ()
return None, f"Conversion error: {e}"

Listing 2: Dictionary to PyVnt conversion

4.3 PyVnt Tree Structure

PyVnt employs a hierarchical tree structure using the anytree library to represent OpenFOAM
configurations in a programmable format:

from pyvnt import =

# Create root node for turbulenceProperties
turbulence_root = Foam(’turbulenceProperties’)

# Simulation type selection
sim_type = KeyData (’simulationType’,
EnumProp (’'vall’,
items={’RAS’, ’'LES’, ’'laminar’},
default='RAS’"))

# RAS model configuration
ras_node = Foam(’'RAS’, parent=turbulence_root)

# Model selection



OpenFOAM LLM FOSSEE, IIT Bombay

model_prop = KeyData (' RASModel’,
EnumProp (' vall’,
items={’kEpsilon’, ’'kOmegaSST’, '
realizableKE' },
default="kEpsilon’))

# Turbulence switch
turbulence_switch = KeyData (’/turbulence’,
BoolProp(’vall’, default=True))

# Print coefficients flag
print_coeffs = KeyData ('printCoeffs’,
BoolProp('vall’, default=True))

# Add properties to RAS node
ras_node.keydata_list = [model_prop, turbulence_switch, print_coeffs]

# Add simulation type to root
turbulence_root.keydata_list = [sim_type]

Listing 3: PyVnt tree example for turbulence properties

5 Results and Discussion

5.1 Performance Metrics Analysis

Comprehensive evaluation of PyVnt across 400 diverse test cases revealed exceptional perfor-
mance characteristics that validate the system’s effectiveness for production deployment. The test-
ing framework encompassed various complexity levels, from fundamental fluid mechanics prob-
lems to advanced multiphysics simulations.

The system achieved remarkable consistency across different file types, with accuracy rates ranging
from 89% to 98%. Table 1 presents comprehensive performance metrics for each configuration file

type.

Table 1: Detailed performance metrics across OpenFOAM configuration file types

File Type Success Rate (%) Avg Time (s) Error Rate (%) Complexity Score
controlDict 96 2.5 2 Low
fvSchemes 94 2.7 3 Medium
fvSolution 92 2.8 4 Medium
blockMeshDict 89 3.0 5 High
turbulenceProperties 95 2.6 2 Low
combustionProperties 89 3.2 6 High
kinematicCloudProperties 90 3.1 5 High




OpenFOAM LLM

5.2 Case Study: Turbulent Pipe Flow

FOSSEE, IIT Bombay

A representative case study demonstrates PyVnt’s capabilities in generating a complete turbulent

pipe flow simulation setup:

User Query: “Generate a steady-state turbulent pipe flow case with Reynolds number 10,000

using k-epsilon turbulence model”

# System/controlDict configuration

control _dict = {

"application": "simpleFoan",
"startFrom": "latestTime",

"startTime": O,
"stopAt": "endTime",
"endTime": 1000,
"deltaT": 1,

"writeControl": "timeStep",

"writeInterval": 100

# System/fvSolution settings

fv_solution = {
"solvers": {
"p": |
"solver": "GAMG",
"tolerance": 1le-0¢,

"relTol": 0.1

by
"U": {

"solver": "smoothSolver",
"smoother": "symGaussSeidel",
"tolerance": 1le-05,

"relTol": 0.1

Listing 4: Generated PyVnt configuration for pipe flow

Validation Results:

* Syntax Accuracy: 100%
¢ Semantic Correctness: 98%

* Cross-file Consistency: 95%

¢ Total Generation Time: 2.8 seconds



OpenFOAM LLM FOSSEE, IIT Bombay

5.3 Efficiency Comparison

Figure 1 illustrates the substantial time savings achieved across different complexity levels:

|
12
120 |- Y 8

100 [ 90 7

80 |- 8

60 i1 Manual Setup
60 | |InPyVnt Automated

40 -

Setup Time (minutes)

Case Complexity Level

Figure 1: Detailed efficiency comparison showing 75-80% time reduction across varying simula-
tion complexity levels

6 Validation and Testing

6.1 Comprehensive Testing Framework

PyVnt underwent rigorous validation through multiple complementary strategies designed to en-
sure reliability across diverse OpenFOAM applications:

Syntax Validation: Automated parsers verify OpenFOAM syntax compliance, checking proper
keyword usage, data type consistency, and structural hierarchy. Success rate: 98.5%

Semantic Validation: Domain knowledge verification ensures physical consistency, checking for
incompatible solver-turbulence model combinations and thermodynamically valid boundary con-
ditions. Success rate: 94.2%

Consistency Validation: Cross-file compatibility verification ensures parameter alignment across
all case files. Success rate: 96.1%

Regression Testing: Comparison against verified reference cases with known solutions. Average
deviation from reference: 2%



OpenFOAM LLM FOSSEE, IIT Bombay

6.2 Benchmarking Against Existing Methods

Comparative analysis positioned PyVnt against traditional manual configuration and existing GUI
tools as shown in Table 2.

Table 2: Comprehensive benchmarking results comparing PyVnt against existing configuration
methods

Method Setup Time (min) Accuracy (%) Error Rate (%) User Skill Required
Manual Configuration 60 85 15 Expert
Existing GUI Tools 45 90 10 Intermediate
PyVnt (CLI) 12 94 6 Beginner
PyVnt (Web Interface) 15 92 8 Beginner

7 Limitations and Future Work

7.1 Current Limitations
Despite PyVnt’s significant achievements, several limitations warrant consideration:

Specialized Solver Selection: Complex multiphysics scenarios occasionally result in suboptimal
solver recommendations, particularly for emerging application areas requiring deep domain exper-
tise.

Geometry Integration: Current focus on dictionary generation limits applicability to cases re-
quiring sophisticated geometric preprocessing or mesh generation workflows.

Edge Case Handling: Highly specialized applications or non-standard parameter combinations
may produce suboptimal configurations, especially in cutting-edge research scenarios.

Knowledge Base Coverage: Rare multiphysics applications and emerging research areas may
lack sufficient representation in the training dataset.

7.2 Future Development Directions

Planned enhancements include integration with geometry and meshing tools, expanded knowledge
base covering emerging CFD applications, enhanced error recovery and suggestion mechanisms,
multi-language support and localization, and integration with cloud computing platforms for large-
scale simulations.

8 Conclusion

This study has successfully demonstrated the development and implementation of PyVnt, a com-
prehensive Al-driven toolkit for automating OpenFOAM case generation and management. Through
the integration of advanced Large Language Models with domain-specific knowledge bases, PyVnt
achieves remarkable performance improvements, delivering 75-80% reduction in setup time while
maintaining 89-98% accuracy across diverse simulation scenarios.

10



OpenFOAM LLM FOSSEE, IIT Bombay

The system’s modular architecture, incorporating FoamGen for natural language processing, a so-
phisticated Bidirectional Converter for format transformation, and a robust RAG system for knowl-
edge retrieval, provides a solid foundation for widespread adoption in educational, research, and
industrial environments. The comprehensive validation framework ensures reliability and accuracy
across the full spectrum of OpenFOAM applications.

PyVnt’s success in democratizing computational fluid dynamics by making advanced simulation
capabilities accessible to users with varying technical expertise represents a significant advance-
ment in CFD workflow automation. The findings highlight the tremendous potential of Al tech-
nologies in addressing complex technical challenges while maintaining the rigor and accuracy
required for engineering applications.

Acknowledgement

We would like to express our sincere gratitude to Prof. Chandan Bose and Mr. Diptangshu
Dey for their guidance and support during our summer fellowship under the OpenFOAM LLM
project at FOSSEE IIT Bombay. Their expertise and knowledge in the field of computational fluid
dynamics and software development have been invaluable to us, and we are truly grateful for their
willingness to share their time and insights with us.

We would also like to thank the staff at FOSSEE IIT Bombay for their warm welcome and support
during our fellowship. It was a pleasure to work with such a talented and dedicated team.

References
[1] The OpenFOAM Foundation. OpenFOAM User Guide v10. https://www.openfoam.
com/documentation/user—guide, 2023.

[2] Johnson, J., Douze, M., & Jégou, H. Billion-scale similarity search with GPUs. IEEE Trans-
actions on Big Data, 7(3), 535-547, 2019.

[3] Lichtenberg, C. AnyTree - Powerful and Lightweight Python Tree Data Structure. https:
//anytree.readthedocs.io/en/latest/, 2023.

[4] Lewis, P, et al. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. Ad-
vances in Neural Information Processing Systems 33, 9459-9474, 2020.

[5] Xiao, S., et al. C-Pack: Packaged Resources To Advance General Chinese Embedding.
arXiv:2309.07597, 2023.

11


https://www.openfoam.com/documentation/user-guide
https://www.openfoam.com/documentation/user-guide
https://anytree.readthedocs.io/en/latest/
https://anytree.readthedocs.io/en/latest/

	Introduction
	Problem Statement

	Governing Equations
	System Architecture
	Data Layer
	Processing Layer
	AI Layer

	Implementation Details
	FoamGen: AI-Powered Case Generation
	Bidirectional Converter Implementation
	PyVnt Tree Structure

	Results and Discussion
	Performance Metrics Analysis
	Case Study: Turbulent Pipe Flow
	Efficiency Comparison

	Validation and Testing
	Comprehensive Testing Framework
	Benchmarking Against Existing Methods

	Limitations and Future Work
	Current Limitations
	Future Development Directions

	Conclusion

