
Synopsis

Swapnil Ranadive
Department of Electronics and Computer Engineering, KJSCE

Implementing Polylines for the OpenFOAM

GUI project

The research migration’s aim is to develop a dictionary generator for the OpenFOAM’s
blockMesh dictionary’s keyword ''polyLine'' leveraging the pyVNT library for
automation and syntax accuracy and creating an intuitive GUI within Blender as the
frontend for it. The GUI focuses on several core aspects:

● Data Storage Mechanism: Implemented using object-oriented programming
principles, including classes of doubly linked lists to store the nodes and manage
the sequences of nodes.

● Real-Time Visualization: Utilized OpenGL rendering for real-time updates and
visualization of polylines within Blender.

● Dynamic Updates and Data Deletion: Enabled the dynamic updating of node
locations and efficient deletion of data.

References

[1] Dmitri I Chitalov. “Development of an application with a graphical user interface (GUI) to
compute in parallel in the OpenFOAM environment”. In: Journal of Physics: Conference Series
(2019) 1399 033001 doi:10.1088/1742-6596/1399/3/033/001



FOSSEE OpenFOAM GUI Semester-Long Internship Report

Semester-Long Internship Report
On

Implementing Polylines for the OpenFOAM
GUI Project

Submitted by

Swapnil Ranadive
K J Somaiya College of Engineering

Under the guidance of

Mr. Rajdeep Adak
Developer, FOSSEE

and

Prof. Janani Muralidharan
Department of Mechanical Engineering

IIT Bombay

June 21, 2024

2



FOSSEE OpenFOAM GUI Semester-Long Internship Report

ACKNOWLEDGEMENT
I would like to express my appreciation and thanks toMr. Rajdeep Adak for being a tremendous mentor
for me. And for understanding my shortcomings, encouraging and allowing me to learn and grow as a
fellow intern. Your mentorship has let an indelible mark on me. I would also like to thank OpenFOAM
GUI team member,Mr. Diptangshu Dey for helping me understand complex codes and for providing
invaluable advice throughout this journey. I thankMs. Payel Mukhurjee and Prof. Janani
Muralidharan for giving me the opportunity to work and for the perceptive insight on this project.

Lastly, this internship has been a boon for me. It has not only developed my interest in the field but also
showed me where I need to improve upon and sharpened my intellect, instilling a passion for continuous
learning and improvement. The experience has been invaluable and I’m eager to apply what I have
learned to future endeavors.

3



FOSSEE OpenFOAM GUI Semester-Long Internship Report

CONTENTS:

1. Abstract 5

2. Introduction 6

2.1 Objective 6

2.2 Approach 6

3. Blender Implementation 6

3.1 Storage Mechanism 6

3.2 User Interface Elements 7

3.3 Generation of Points 8

3.4 The Draw Handler 10

3.5 Dynamic Updates 11

3.6 Data Deletion 11

4. Dictionary Generator 11

5. Conclusion 13

5.1 Conclusion 13

5.2 In Development 13

5.3 Future Scope 14

6. References 14

4



FOSSEE OpenFOAM GUI Semester-Long Internship Report

LIST OF FIGURES

Figure 01 Approach for generation of OpenFOAM dictionary

Figure 02 Class relationship diagram for ‘Storage’, ‘LinkedList’ and ‘Node’

Figure 03 GUI Interface

Figure 04 Edge of a structure

Figure 05 The curve in which the points are to be generated.

Figure 06 Generation of points around an edge in Blender

LIST OF TABLES

Table 01 Operator Functions

Table 02 Features in development

5



FOSSEE OpenFOAM GUI Semester-Long Internship Report

ABSTRACT
The following report documents a semester-long internship focused on enhancing the functionality of
OpenFOAM, an open-source software suite for computational fluid dynamics, through the development of
a graphical user interface using Python in Blender. The aim is to develop a dictionary generator for the
OpenFOAM’s blockMesh dictionary’s keyword “polyLine” leveraging the pyVNT library for automation
and syntax accuracy and creating an intuitive GUI within Blender as the frontend for it. The GUI focuses
on several core aspects:

1. Data Storage Mechanism: Implemented using object-oriented programming principles, including
classes of doubly linked lists to store the nodes and manage the sequences of nodes.

2. Real-Time Visualization: Utilized OpenGL rendering for real-time updates and visualization of
polylines within Blender.

3. Dynamic Updates and Data Deletion: Enabled the dynamic updating of node locations and
efficient deletion of data.

6



FOSSEE OpenFOAM GUI Semester-Long Internship Report

INTRODUCTION

2.1 OBJECTIVE
The focus is on developing a dictionary generator specifically for the blockMesh dictionary in
OpenFOAM, utilizing the pyVNT library created by the FOSSEE team. By automating the generation of
required OpenFOAM dictionaries, we intend to help new learners quickly create blockMesh dictionary
and parameter files without needing extensive knowledge of meshing and solving techniques. This
automation will adhere to OpenFOAM's meshing and solving rules. Additionally, a graphical user
interface (GUI) will be developed in Blender using Python, allowing users to interact with the system
seamlessly and trigger the generation of OpenFOAM dictionaries via the PyVNT library. The developed
addon will support Blender v2.8+.

2.2 APPROACH

[Approach for generation of OpenFOAM dictionary]

BLENDER IMPLEMENTATION

3.1 STORAGE MECHANISM

The system for managing polylines and their respective data is a sophisticated framework specifically
tailored to work with Blender, the open-source 3D creation suite. This system leverages object-oriented
programming principles and data structures to provide efficient storage, manipulation, and visualization
of polylines.

At the core of the system is the ‘Node’ class, which encapsulates individual points in a polyline. Each
‘Node’ object contains a ‘location’ attribute that stores the 3D coordinates of the point, and an ‘obj’
attribute that references the corresponding Blender object created in the scene and 3D viewport. The
‘Node’ class also maintains pointers to the next and previous nodes in the sequence, facilitating its
integration into a doubly linked list. This linked list structure is implemented in the ‘LinkedList’ class,
which maintains a collection of ‘Node’ objects. The class itself features methods for inserting new nodes
and iterating through the list. A doubly linked list is an optimal choice for this data structure due to its
directional traversal capability and dynamic, efficient insertions and deletions without requiring
reallocation or reorganization of memory. The flexibility and scalability support variable sizes without

7



FOSSEE OpenFOAM GUI Semester-Long Internship Report

performance degradation, while maintaining node integrity through pointers to both previous and next
nodes ensure the continuity of the polyline during modifications.

The ‘Storage’ class acts as the primary interface for managing multiple polylines. It maintains a
dictionary (‘polyline_storage’) where keys are unique identifiers generated sequentially, and values are
instances of the previously mentioned ‘LinkedList’ class, each representing a distinct polyline. The
‘create_list’ method initializes a new ‘LinkedList’, assigns it a unique key, and stores it in the dictionary,
returning the key for future operations. The ‘insert_into_list’ method facilitates the addition of new nodes
to a specified polyline, ensuring that the polyline exists and then delegating the insertion operation to the
corresponding ‘LinkedList’. The ‘delete_polyline’ method allows for the removal of an entire polyline,
meticulously ensuring that associated Blender objects are removed to free up resources and that the UI is
updated by removing the polyline's checkbox from Blender's scene properties.

[Class relationship diagram for ‘Storage’, ‘LinkedList’ and ‘Node’]

3.2 USER INTERFACE ELEMENTS

The blockMeshDict Blender add-on specifically structured for polylines features three primary collapsible
panels: ‘Polyline’, ‘Polyline List’ and ‘Points’. Each panel serves a distinct role in managing and
visualizing polylines within the 3D viewport of Blender. The main ‘Polyline’ panel serves as the primary
interface for users to manage the creation of the polylines. It contains a property field linked to allow
users to adjust the number of points forming the polyline before generating them in the viewport.

8



FOSSEE OpenFOAM GUI Semester-Long Internship Report

BUTTONS FUNCTION

Generate Points Generate the number of points specified around the selected edge
Adds a new polyline to the polyline list

Draw Line Enables the draw handler to visualize the polyline

Show Points Displays a third collapsible panel with points’ location which forms the
polyline. The points’ location can be manipulated.

Delete Line Deletes the lines from the dictionary storage, the viewport and memory of
Blender.

[Operator Functions]

[GUI Interface]

4.3 GENERATION OF INTERPOLATION POINTS

The function in question is designed to generate a series of points along a curved line between two
selected vertices (forming an edge in a 3D space. The function starts by identifying the edge that has been
selected by the user. An edge defined by two vertices. The function checks the selection to ensure that
exactly two vertices forming an edge are selected. If the selection is invalid, meaning that if points are
selected or a face, the function halts and returns an error message instructing the user to select an edge.
Once the coordinates of the two vertices have been selected, the center and radius of the curve is
calculated considering the edge as a diameter. The radius is determined as half of the Euclidean distance
between the two vertices.

9



FOSSEE OpenFOAM GUI Semester-Long Internship Report

[Edge of a structure]

[The curve in which points are to be generated.]

An object of the Storage class is created and when the points are generated, a linked list is initialized to
hold these points. The first point added to this linked list is one of the vertices of the edge, and the
subsequent points generated along the curve are appended to this list. These points are generated along a
semicircular path around the edge.

[Generation of points around an edge in Blender]

10



FOSSEE OpenFOAM GUI Semester-Long Internship Report

To achieve this, the angle for each point is calculated based on the total number of points to be generated.
The semicircle is divided into as many segments as the number of points, ensuring even spacing along the
curve. For each point generated, an empty object is added as a placeholder object that presents that point
in the space in the viewport.

4.4 THE DRAW HANDLER
The drawing of polylines in the 3D viewport happens using a combination of python scripting and
OpenGL (through Blender’s bgl and gpu modules). It allows users to visually represent polylines between
specified points directly. When the button for this operator is clicked by the user, a function is called. This
specific function acts as a handler that keeps running in the background continuously once it is registered.
It remains active until it is explicitly removed. This operation ensures that any changes or updates to the
polylines are immediately reflected in the 3D viewport.

The storage contains all the polylines that have been generated and need to be potentially displayed. Each
polyline is represented as a linked list of nodes, where each node contains the coordinates of a point on
the polyline. For each polyline, the function retrieves the defined color, width, and other properties that
dictate how the line should be rendered. These properties can include line thickness, color, and any
additional visual effects. Using these properties, the function creates batches of vertices representing line
segments between consecutive points of the polyline.

Using the configured shader and vertex batches, the function proceeds to draw the polylines on the 3D
viewport. A shader is a type of program used in computer graphics to determine how vertices and pixels
are processed and rendered. In this case, the shader is configured to handle the drawing of lines with the
specified properties. The vertex batches are processed by the shader to render the line segments, creating
a visual representation of the polyline in the 3D environment. The function also takes into account user
preferences regarding which polylines should be visible. This is achieved through a linked list iteration
where each stored polyline is checked against user-defined visibility settings. The line appears in the 3D
view only when the corresponding polyline’s checkbox is checked.

[Class relationship diagram for ‘Storage’, ‘LinkedList’ and ‘Node’]

11



FOSSEE OpenFOAM GUI Semester-Long Internship Report

4.5 DYNAMIC UPDATES

When a user changes a point's location in the panel within Blender's UI or in the 3D viewport, the
corresponding Blender object's location attribute is updated through Python scripting. This change
triggers the handler function to immediately redraw or update the object's position in the 3D viewport.
Blender's viewport rendering engine continuously monitors changes to object properties like location,
ensuring that any modifications made in the panel are reflected in real-time within the 3D environment.

4.6 DATA DELETION

Deleting points from a polyline involves targeted manipulation of the polyline's linked list data structure.
When a point deletion is initiated using the operator, the script first identifies the specific point to delete
based on its name. It then traverses the linked list associated with the polyline stored in storage.
The deletion process involves adjusting pointers within the linked list:

1. The operator locates the node (point) to delete and adjusts its predecessor's next pointer to skip
over the node.

2. If the deleted node was the head or tail of the linked list, appropriate adjustments are made to
ensure continuity (head or tail pointers).

Simultaneously, the Blender object representing the point is removed from the scene, freeing up
associated resources.
Additionally, the operator updates any relevant UI elements, ensuring that the panel accurately reflects the
current state of the polyline after the deletion.
When deleting a line, the operator identifies the polyline to delete using its unique key. It accesses the
polyline's linked list data structure stored in storage, iterating through each node. For each node
(representing a point along the polyline), the associated Blender object (point) is removed from the scene.

DICTIONARY GENERATOR

The pyVNT library, created by the OpenFOAM GUI Team, constructs node trees that replicate the format
of OpenFOAM Dictionaries. It offers tools to easily manage these trees using straightforward Python
scripts and produces serialized data to dynamically create graphical representations of the trees. pyVNT
streamlines the process of interacting with OpenFOAM configuration files, making it simpler to visualize
and edit complex data structures. By providing a flexible and user-friendly interface, pyVNT enhances the
efficiency of managing and manipulating OpenFOAM Dictionaries within Python-based workflows.

pyVNT output is structured with a root node and edges defined using the polyLine keyword followed by
indices and coordinates in a nested format. On the right, the OpenFoam dictionary syntax displays a
similar structure where the edges keyword encompasses polyLine definitions with identical indices and
coordinate data. Thus, we can see the congruence in both; showing how pyVNT helps in directly
generating the OpenFOAM dictionary syntax without manual efforts.

12



FOSSEE OpenFOAM GUI Semester-Long Internship Report

[pyVNT Output] [OpenFoam Dictionary Syntax]

13



FOSSEE OpenFOAM GUI Semester-Long Internship Report

CONCLUSION

6.1 CONCLUSION

Blender’s geometry design functionalities with a graphical user interface to ease the entire
process of geometry creation and further, text file generation within the software. This provides
an user-friendly interface for parameter editing than manual modification and generation of
dictionary files.

6.2 IN DEVELOPMENT

FEATURE FUNCTION

Dictionary Generator Generates the text file for openFOAM dictionary blockMeshDict.

Generation Capabilities The proper generation of points should extend beyond basic rectangular
structures and even for other types of structures.

Collision Detection Detecting points merging into adjacent objects to avoid their generation
into them.

Collapsible Popup
Windows

Managing visibility and interactivity with the points data.

Labeling with indices For better identification of points through the panel.

Labeling with respective 3D
coordinates

For better identification of points through the panel.

Rotation of the polylines Rotating the generated points of the polyline around the edge to increase
flexibility for editing.

Merging of polylines To simplify complex mesh structures.

Different curves of point
generation

Develop different functions beyond generation of points in the shape of a
curve.

Better GUI A more user-friendly and simplistic design for the GUI.

[Features in development.]

14



FOSSEE OpenFOAM GUI Semester-Long Internship Report

6.3 FUTURE SCOPE

The future development of the add-ons would focus on enhancing current features, refining the already
present code and introducing new tools. Enhancements to the polyline feature, the development of
SimpleSpline and PolySpline dictionary generators and respective GUI panels as necessary for both
features.

REFERENCES

CFD FOSSEE https://cfd.fossee.in/
Blender https://www.blender.org/
OpenFOAM https://www.openfoam.com/
PyVNT https://github.com/FOSSEE/pyvnt

15

https://cfd.fossee.in/
https://www.blender.org/
https://www.openfoam.com/
https://github.com/FOSSEE/pyvnt

