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1. Introduction 

A careful observation of the oblique shock relation shows that for every Mach number, there 

is a maximum angle of deflection. For example, the oblique shock 𝜃 − 𝛽 − 𝑀 relation (fig.1) 

shows that for 𝑀 = 1.5, the maximum deflection angle 𝜃𝑚𝑎𝑥 is 12o. So what happens to 𝑀 = 

1.5 flow deflected at an angle more than 12o?  

 
Figure 1. 𝜃 − 𝛽 − 𝑀 diagram for 𝑀 = 𝑀1 [1]. 

When a flow of given Mach number encounters a body which forces the flow to deviate more 

than the achievable deflection angle for an attached oblique shock, the oblique shock 

transforms into a curved detached shock. These curved detached shocks are also called bow 

shocks. Since the deflection angle required for the formation of bow shocks is high, they are 

often seen forming around blunt bodies. The bow shock significantly increases the drag in a 

body. This property is used in the design of return capsules during space mission to slow down 

the vehicle during atmospheric re-entry.  

2. Governing Equations 

The Navier-Stokes equations for an inviscid, compressible flow in an arbitrary domain is 

𝜕(𝜌𝑢⃗ )

𝜕𝑡
+ ∇. [𝑢⃗ (𝜌𝑢⃗ )] + ∇𝑝 = 0 

where all symbols have their usual meaning. The Navier-Stokes equation is supplemented with 

the conservation of mass 

𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑢⃗ ) = 0  

Conservation of total energy for an inviscid compressible flow gives 

𝜕(𝜌𝐸)

𝜕𝑡
+ ∇. [𝑢⃗ (𝜌𝐸)] + ∇. (𝑝𝑢⃗ ) = 0 

where the total energy density 𝐸 = 𝑒 + |𝑢⃗ |/2 with 𝑒 the specific internal energy. 
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The 3 equations are supplemented with an equation of state which is the isentropic relation 

𝑑𝑝

𝑑𝜌
= (

𝜕𝑝

𝜕𝜌
)
𝑠

= 𝑎2 

where 𝑎 is the speed of sound. 

2.1. Stand-off Distance  

Consider a supersonic flow over a blunt body as shown in fig. 2. Here the shock wave stands 

at a distance 𝛿 from the nose of the body. This distance is defined as stand-off distance or shock 

detachment distance. At point 𝑎, the shock wave is normal to the flow and acts as a normal 

shock wave. At points 𝑏 and 𝑐, the shock wave is much weaker and acts like an oblique shock 

wave. The shock gets weaker away from the body, eventually evolving into Mach waves at 

large distances from the body. 

 
Figure 2. Supersonic flow over a blunt body [2]. 

The shape of the shock wave, stand-off distance 𝛿, and the flow field between shock and the 

body depend on the free stream Mach number 𝑀1 and the shape and size of the blunt body. 

Unlike normal and oblique shock waves, solution to bow shock waves cannot be theoretically 

predicted [3]. 
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2.1.1. The Time-dependent Technique: Application to Bow Shocks 

Consider a supersonic flow over a blunt body as shown in fig .3. The shape of the body is given 

by 𝑏 = 𝑏(𝑦). For a given free stream Mach number, the shape and the position of the body, 

shock wave is to be calculated. 

 
Figure 3. Blunt-body supersonic flow field in physical plane [2]. 

The governing equations for the flow is described in section 2. 

 
Figure 4. Blunt-body supersonic flow field in computational plane [2]. 

For the ease of calculation, application of finite differences in a rectangular grid is preferred. 

Consider the transformation 
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𝜉 =
𝑥 − 𝑏

𝑠 − 𝑏
   and  𝜂 = 𝑦 

where 𝑏 = 𝑏(𝑦) gives the abscissa of the body and 𝑠 = 𝑠(𝑦, 𝑡) gives the abscissa of the shock. 

The above transformation produces a rectangular grid in the computational plane as shown in 

fig. 4.  

The solution to the flow is calculated by assuming a shock (position and shape) initially. With 

the assumed shock, the appropriate boundary (far-field and body surface) and jump (shock) 

conditions are applied. The governing equations are solved using an appropriate scheme. The 

predictor-corrector method, like MacCormack’s technique, is used to converge the solution to 

steady state as shown in fig. 5. 

 
Figure 5. Typical variation of a flow field variable with time/iteration [2]. 

 

3. Implementation in OpenFOAM 

3.1. Problem Statement 

The problem considers a supersonic flow of air at 𝑀 = 1.5 over a wedge of angle 23o. The free 

stream pressure and temperature is 81135 Pa and 145.768 K respectively. 

3.2. Geometry & Meshing  

The geometry of the wedge is shown in fig. 6. The dimensions are as mentioned in fig. 6. The 

wedge angle is 23o. The depth (into the sheet) of the geometry is 1 cm. The geometry was 

created using blockMesh utility. The meshing is simpleGrading. 

The geometry is divided into 3 blocks. Each block is meshed separately, with blocks 1 and 2 

being more refined than block 3. The cells are inflated along 𝑦-axis in blocks 1 and 2. The cells 

are inflated along both 𝑥-axis and 𝑦-axis in block 3.  
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Figure 6. The configuration of flow supersonic flow over a wedge. 

Only one cell is considered along 𝑧-axis, making the simulation 2D in 𝑥𝑦-plane. 

3.3. Initial & Boundary Conditions  

The boundary conditions for various faces are described below: 

a) Inlet: The left face of block 1 

 

Pressure (𝑝) 81134.8794470031 Pa 

Temperature (𝑇) 145.768159204 K 

Velocity vector (𝑢⃗ ) (363.02, 0, 0) m/s 

 

b) Outlet: The right face of block 3 

 

Pressure (𝑝) Zero Gradient 

Temperature (𝑇) Zero Gradient 

Velocity vector (𝑢⃗ ) Zero Gradient 
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c) Bottom: The base of block 1 

 

Pressure (𝑝) Symmetry Plane 

Temperature (𝑇) Symmetry Plane 

Velocity vector (𝑢⃗ ) Symmetry Plane 

 

d) Obstacle: The base of block 2 and block 3 

 

Pressure (𝑝) Zero Gradient 

Temperature (𝑇) Zero Gradient 

Velocity vector (𝑢⃗ ) Slip 

 

e) Top: The upper face of all 3 blocks 

 

Pressure (𝑝) Zero Gradient 

Temperature (𝑇) Zero Gradient 

Velocity vector (𝑢⃗ ) Zero Gradient 

 

For initial condition, the internal field is assigned Inlet boundary condition throughout. 

3.4. Solver 

The flow through convergent-divergent nozzle governing equations, as described in section 2, 

are solved using rhoCentralFoam [4]. The thermophysical properties of air, assuming perfect 

gas, is used. The simulation type is laminar. 

 

4. Results  

The simulations are run on OpenFOAM 5.0 and the post processing is done using ParaView.  

The pressure field and velocity magnitude at a computational time 𝑇𝑐𝑜𝑚𝑝 before reaching 

steady state is shown in fig. 7. The bow shock is clearly visible in the contours.  

As clearly indicated in the contours, there is a sudden jump in pressure across the shock while 

velocity drops across the shock.  

Also, the shock is very well defined close to the wedge and gets smeared away from the body 

indicating a weak shock. This observation agrees with the discussion in section 2.1.  
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Figure 7. Pressure field and velocity magnitude at 𝑇𝑐𝑜𝑚𝑝 = 0.00011. 

The steady-state pressure field and velocity magnitude is shown in fig. 8. 

 
Figure 8. Steady-state pressure field and velocity magnitude. 
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The stand-off distance 𝛿 measured from the contour is 0.282 cm. The steady-state velocity 

plots along two different 𝑦 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 lines are shown in fig. 9 and 10. 

 
Figure 9. Variation of steady-state velocity along 𝑥-axis at 𝑦 = 1 cm. 

The velocity drops to 232.32 m/s across the shock at 𝑦 = 1 cm. 

 
Figure 10. Variation of steady-state velocity along 𝑥-axis at 𝑦 = 2 cm. 

The velocity drops to 263.98 m/s across the shock at 𝑦 = 2 cm. 

The data clearly indicates that the shock at gets weaker away from the body. 
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The steady-state pressure plot along 𝑦 = 0 is shown in fig. 11. 

 
Figure 10. Variation of steady-state pressure along 𝑥-axis at 𝑦 = 0. 

Analysing the above data shows that the pressure ratio across the shock 𝑝2/𝑝1 is 2.476. The 

normal shock relation for 𝑀 = 1.5 shows that the pressure ratio 𝑝2/𝑝1 is 2.458, indicating that 

the bow shock acts like a normal shock near the wedge, as discussed in section 2.1. 

 

5. Conclusion 

Supersonic flow of air over a wedge is simulated using OpenFOAM solver rhoCentralFoam. 

The wedge angle is more than the allowable deflection angle for the formation of an attached 

oblique shock for the given Mach number. The simulation produced expected result. A curved 

shock wave at a finite stand-off distance was produced. The pressure jump across the shock 

near the wedge also agreed with the normal shock relations. It was also shown that the shock 

waves got weaker away from the body. The simulated results match well with analytical 

solution. 

 

 

 

 

 

 

0

50000

100000

150000

200000

250000

300000

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045

p
 (

P
a)

x (m)



 

10 
 

References 

 

1.  Anderson, J.D., Modern Compressible Flow, McGraw Hill Inc., New York, 1984. 

 

2.  Anderson, John D. Fundamentals of Aerodynamics. Boston: McGraw-Hill, 2001. 

 

3.  Liepmann, H. W. and A. Roshko, Elements of Gasdynarnics, Wiley, New York, 1957. 

 

4.  Greenshields, C. J., Weller, H. G., Gasparini, L. and Reese, J. M. (2010), 

Implementation of semi‐discrete, non‐staggered central schemes in a collocated, 

polyhedral, finite volume framework, for high‐speed viscous flows. Int. J. Numer. 

Meth. Fluids, 63: 1-21. doi:10.1002/fld.2069 

 


