
Air-flow in bed-room with rotating fan explaining
cyclicAMI in OpenFoam

Divyesh D. Variya
Gujarat Technological University, divyeshvariya7@gmail.com

Government Engineering College, Valsad
+91 7777908833

Abstract - Aim of the case study is to simplify understanding of cyclicAMI
in OpenFoam. Rotating, dynamic mesh gives clear and realistic solutions
of real life problems. OpenFoam has wide range of possibility to solve
engineering problems as per user criterion. Prior objective of this case
study will be to explain rotating mesh feature in OpenFoam. A transient
and RAS (turbulent) theory will be use while computing. By using simple
geometry, snappyHexMesh and pimpleFoam solver, results to be
analyzed.

Index Terms – CyclicAMI, PimpleFoam, SnappyHexMesh

INTRODUCTION

In engineering, CFD of moving part/component is challenging work
to perform, Specially with rotating geometry. Many object, in mechanical
engineering are made of shaft, gear and so many rotating component. Yes,
CFD can be perform with stationary part with desired angle position but, actual
visualization gives only with rotating mesh. To compare two design with its
shape optimization and flow design, moving mesh simulation gives best
results. In this paper simulation of a rotating fan inside a bed room is taken as
case.

In OpenFoam, three types of setup available to solve rotating mesh.

1. Single Rotating Frame (SRF)
2. Multiple Reference Frame (MRF)
3. Arbitrarily Mesh Interface (AMI)

To solve rotating mesh simulations, two fundamental question should we ask
before begin with geometry creation.

(Domain type)
1. Does our model include some stationary regions or not?

(Time dependency)
2. Which do we want to obtain, a steady or transient solution?

Only Rotating Region With Stationary Region

Steady SRFSimpleFoam
SimpleFoam with

modification in fvOption

Transient SRFPimpleFoam pimpleFoam

Table 1 : Types of simulations for rotating mesh

In SRF simulations, Mesh will not move but, it will give actual
simulation results. In this case if we remove room, bed, door and window, It
will be a SRF simulation. Because, after removing stationary fields, there is no
requirement of motion. Only rotational angular velocity is required to define.

The Multiple Reference Frame (MRF) model computes fluid flow
using both the rotating and stationary reference frames.

• Rotating zone is solved in the rotating frame
• Stationary zone is solved in the stationary frame

In above both simulations, Mesh will not rotate. It gives as the same
results as it is rotating. To solve case with rotating mesh, which should be
visible in results, AMI is the best option.

In Arbitrarily Mesh Interface (AMI), dynamicMeshDict file should
be present in case. In this dictionary, cellZone need to define for our AMI
patch and Fan patch. SolidBodyMotionFunction defines type of motion in
case. Various types of motion can be applied ti the cellZone, like:

1. Transitional Motion
linearMotion
oscillatingLinearMotion

2. Rotating Motion
rotatingMotion
axisRotationMotion
oscillatingRotatingMotion

3. Ship Design Analysis
SDA

4. Combination of the above motions
multiMotion

GEOMETRY

A room with one bed, one fan, one door and two windows is shown
below. Dimensions of the geometry is in mm. So the room is 6m X 5m X 10m
in dimensions.

Figure 1 : Geometry

Note: One AMI boundary should be made while making geometries. This
AMI should cover our rotating component. In this geometry, At the top of
ceiling, a cylindrical part covers a Fan. That will be AMI patch in this case.

Figure 2 : Part file

This AMI part will not take part in any of the simulation process. It
will just define boundary of stationary and rotating parts.

mailto:divyeshvariya7@gmail.com

MESHING

In this case study all tools to be used for meshing are from openFoam itself.

I. blockMesh

BlockMesh defines domain of complete mesh. Geometry of the
room should be covered by blockMesh. In this case, all patches defines
from .stl files so no need to define in blockMeshDict.

Here is the blockMesh data:

Axis Dimensions Length Cells

X (-6,6) 12 meter 120

Y (-4,4) 8 meter 80

Z (-3,3) 6 meter 60

TOTAL 5,76,000

Table 2 : BlockMeshDict

II. surfaceFeatureExtract

extractionMethod and includedAngle should be define in
surfaceFeatureExtractDict. In this case, all edges are selected by applying 180
angle and .objs are written.

III. SnappyHexMesh

SnappyHexMesh is in-build tool for internal and external meshing in
OpenFoam. Here is source code for meshing,

//**//
castellatedMesh true;
snap true;
addLayers false;
//**//

As shown in above code, castellated and snap options are ON for
the meshing, for more accurate results, addLayers can be turn on too.

All Geometries are defined for meshing as below. If Geometry is
made in mm and exported directly to .stl, it will automatically taken in
METER UNIT. So, scaling is required as shown below.

//**//
geometry
{

 AMI
 {
 type triSurfaceMesh;

scale 0.001;
 file "AMI.stl";
 }
 door
 {
 type triSurfaceMesh;

scale 0.001;
 file "door.stl";
 }
 fan
 {
 type triSurfaceMesh;

scale 0.001;
 file "fan.stl";
 }
 sofa
 {
 type triSurfaceMesh;

scale 0.001;
 file "sofa.stl";
 }
 room
 {
 type triSurfaceMesh;

scale 0.001;
 file "room.stl";
 }
 window_1
 {

 type triSurfaceMesh;
scale 0.001;

 file "window_1.stl";
 }
 window_2
 {
 type triSurfaceMesh;

scale 0.001;
 file "window_2.stl";
 }

}
//**//

In castellatedMeshControls, maxLocalCells and maxGlobalCells
must be define. It controls the meshing. CastellatedMesh controls and
refinement conditions are as below,

//**//
castellatedMeshControls
{
 maxLocalCells 100000;
 maxGlobalCells 8000000;
 minRefinementCells 0;
 nCellsBetweenLevels 2;

 features
 (
 {

file "AMI.eMesh";
scale 0.001;
level 2;

}
 {

file "fan.eMesh";
scale 0.001;
level 6;

}
 {

file "door.eMesh";
scale 0.001;
level 0;

}
 {

file "sofa.eMesh";
scale 0.001;
level 2;

}
 {

file "room.eMesh";
scale 0.001;
level 0;

}
 {

file "window_1.eMesh";
scale 0.001;
level 0;

}
 {

file "window_2.eMesh";
scale 0.001;
level 0;

}
);

 refinementSurfaces
 {
 AMI
 {
 level (3 3);
 faceType boundary;
 cellZone rotatingZone;
 faceZone rotatingZone;
 cellZoneInside inside;
 }
 fan{ level (6 6);}
 door{ level (0 0);}
 window_1{ level (0 0);}
 window_2{ level (0 0);}
 room{ level (0 0);}
 sofa{ level (2 2);}
 }

 resolveFeatureAngle 30;

 refinementRegions
 {
 AMI{ mode inside; levels ((1E15 3));}
 }

 locationInMesh (0 0 0);
 allowFreeStandingZoneFaces false;
}
//**//

As shown above, locationInMesh should be add wisely. It should
be inside of keeping data. If external flow should determine then, it should be
inside domain but outside the .stl file.

In refinementSurfaces, AMI patch is desined as boundary and its
cellZone defined as rotatingZone (any name can be given).

Solver iteration to refine and keeping of cells to removing of cells
are define in Snap control portion. Mesh quality control will be define in
meshqualitycontrols. Shifting of cells and restoring of cells from snap to
castalleted is done here. Snap control data is as below,

//**//
snapControls
{
 nSmoothPatch 3;
 tolerance 1.0;
 nSolveIter 300;
 nRelaxIter 5;
 nFeatureSnapIter 10;
 implicitFeatureSnap true;
 explicitFeatureSnap false;
 multiRegionFeatureSnap true;
}

meshQualityControls
{
 maxNonOrtho 65;
 maxBoundarySkewness 20;
 maxInternalSkewness 4;
 maxConcave 80;
 minVol 1e-13;
 minTetQuality -1;
 minArea -1;
 minTwist 0.01;
 minDeterminant 0.001;
 minFaceWeight 0.05;
 minVolRatio 0.01;
 minTriangleTwist -1;
 nSmoothScale 4;
 errorReduction 0.75;
 relaxed
 {
 maxNonOrtho 75;
 }
}
//**//

Figure 3 : Wire-frame of Mesh

Note: Not covering addLayers portion because not going use in this case
study. If interested in that too, please refer INS_Vikramaditya case study.

Figure 4 : 2D slice of Mesh

IV. RenumberMesh and checkMesh

It is suggested all time to perform renumberMesh to improve simulation
calculation. Checkmesh gives, wheter mesh is ok or not. Here are few data for
this case,

Number of cells 22,19,176

Max aspect ratio 7.383145

Max skewness 6.3611

Highly skew faces 5

Table 3: checkMesh results

One failed mesh is there but going with same results.

Results after meshing done,

Figure 5 : Fan Mesh 1

Figure 6 : Fan Mesh 2

V. CreatePatch

In the case of rotating region and stationary region, one boundary should be
setup. That we have define as AMI, from one geometry, we need to give two
boundary. That will be AMI1 and AMI2. Source code is as below,

//**//
patches
(
 {
 //- Master side patch
 name AMI1;
 patchInfo
 {
 type cyclicAMI;
 matchTolerance 0.0001;

 neighbourPatch AMI2;
 transform noOrdering;
 }
 constructFrom patches;
 patches (AMI);
 }

 {
 //- Slave side patch
 name AMI2;
 patchInfo
 {
 type cyclicAMI;
 matchTolerance 0.0001;
 neighbourPatch AMI1;
 transform noOrdering;
 }
 constructFrom patches;
 patches (AMI_slave);
 }
);
//**//

VI. DynamicMeshDict

In Dynamic Mesh file cellzones should be our rotating zone that we have
decided while sHM operaion. Origin and axis should be known otherwise it
will start rotating whole zone wrong way. Omega is angular velocity in rad/s.

//**//
dynamicFvMesh dynamicMotionSolverFvMesh;

motionSolverLibs ("libfvMotionSolvers.so");

motionSolver solidBody;

cellZone rotatingZone;

solidBodyMotionFunction rotatingMotion;

origin (0 0 0);
axis (0 0 1);
omega 10;
//*** //

SIMULATION

The CFD analysis of the airflow in a bedroom was done using the
software OpenFOAM (v-6.0).

I. Boundary Conditions

Airflow enters with 8m/s fixed velocity by two windows. Airflow is
in Normal to the window face and upper direction. Outlet is given to door,
which is pressureInletOutletVelocity. Velocity of fan is defined in
dynamicmeshdict and in boundary conditions, it is given as
movingWallVelocity. Pressure is given to all boundaries as fixedFluxPressure
and rest RAS conditions are stated in table below,

K Nut Omega p U

AMI1 0.00341 1e-5 0.1 0 (0,0,0)

AMI2 0.00341 1e-5 0.1 FFP 0 (0,0,0)

fan 0.00341 1e-5 0.1 FFP 0
MovingWallVel

ocity
(0,0,0)

window_1 0.00341 ZG 0.1 FFP 0 FV (0,8,8)

window_2 0.00341 ZG 0.1 FFP 0 FV (0,8,8)

door ZG ZG ZG FV 0
PressureInletOu

tlet Velocity
(0,0,0)

room 0.00341 1e-5 0.1 FFP 0 noSlip

sofa 0.00341 1e-5 0.1 FFP 0 noSlip

Table 4 : Boundary Conditions

II. PimpleFoam Solver

In this case, we need to analyze Turbulent, Transient flow for an in-
compressible fluid, we have used pimpleFoam solver. Here, no need to solve
energy equation due to the in-compressibility. PimpleFoam is Transient solver
for incompressible, turbulent flow of Newtonian fluids, with optional mesh
motion and mesh topology changes. The PIMPLE Algorithm is a combination
of PISO (Pressure Implicit with Splitting of Operator) and SIMPLE (Semi-
Implicit Method for Pressure-Linked Equations). All these algorithms are
iterative solvers but PISO and PIMPLE are both used for transient cases
whereas SIMPLE is used for steady-state cases.

Continuity equation:
U=0∇⋅U=0 (1)

and momentum equation:
∂/∂t(U)+ (UU)− R=− p+S∇⋅U=0 ∇⋅U=0 ∇ U (2)

III. Results

The simulation is run with deltaT is 0.0002 and writecontrol of
adjustableRunTime. WritePrecision taken to 7 and timePrecision is 6. Max
cornant number is 1 and maxDeltaT is 1. Simulation run for 0.555 seconds so,
its flow is not fully developed for complete simulation it can be run further.
These data are simulated in intel CORE i5 8th Gen processor and 8 GB RAM.
Time taken for these simulation is 3,45,000 seconds with 4 cores in MPI
parallel.

Figure 7 : T=0 Sec.

Figure 8 : T=0.015 Sec.

Figure 9 : T=0.255 Sec.

Figure 10 : T=0.54 Sec.

Figure 11 : T=0.555 Sec.

CONCLUSION

Yet, flow in results shown above is not fully developed but main objective of
dynamic mesh is completely satisfy. As visuals from paraview shows, fan
inside room is rotating and streamline shows flow through Y-Axis on point of
fan center. Simulation can further run and better results can be visualize.

ACKNOWLEDGMENT

It is always a pleasure to remind the fine people in the Indian Institute of
Technology (IIT), Bombay and Government Engineering college, Valsad for
their the sincere guidance I received to uphold my theoretical as well as CAE
skills in Computational fluid dynamics.

First of all, thanks to my parent for giving encouragement, enthusiasm and
invaluable assistance to me. Without all this, I might not be able to complete
this subject properly.

Second, I would like to thanks to Professor Shivasubramanian Gopalakrishnan
(Department of Mechanical Engineering) forgive me the opportunity to do the
marvelous project study. He also gives me their guidance and support.

Thirdly, I also want to express my deepest thanks to Mr Rohit Panday as an
industry professional advisory for CAE Department that has helped me a lot in
dealing with the industrial project. He had supported me by showing a different
method of information collection about the CAE. He helped all the time when I
needed and He gave the right direction toward completion of the project.

Besides, I would like to thank Mr Sathish kanniappan, Miss. Deepa Vedartham
for extending their friendship towards me and making a pleasure-training
environment in the IIT, Bombay during the internship.

A paper is not enough for me to express the support and guidance I received
from them almost for all the work I did there.

Finally, I apologize for all other unnamed who helped me in various ways to
have a good training.

REFERENCES

[1] https://www.slideshare.net/fumiyanozaki96/cfd-for-rotating-
machinery-using-openfoam

[2] https://www.slideshare.net/fumiyanozaki96/openfoam

AUTHOR INFORMATION

Divyesh Variya (M’97) received the B.E.
degree in mechanical engineering from the gujarat
technological university, in 2018 and also worked as
an intern under Prof. Shivasubramanian
Gopalakrishnan for FOSSEE (Free and Opensource
Software for Education) Project on OpenFOAM in
Indian Institute of Technology, Bombay. His work
interests include all CAE projects with linear/non
linear structural analysis, computational fluid
dynamics, dynamic robotics analysis, failure analysis
and prevention, and design development.

https://www.slideshare.net/fumiyanozaki96/openfoam
https://www.slideshare.net/fumiyanozaki96/cfd-for-rotating-machinery-using-openfoam
https://www.slideshare.net/fumiyanozaki96/cfd-for-rotating-machinery-using-openfoam

	Introduction
	Geometry
	Simulation
	Conclusion
	Acknowledgment
	References
	Author Information

