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1. Introduction 

A flow is termed supersonic if the flow travels faster than the speed of sound through the 

continuum. Speed of the sound is the speed at which any information is transmitted through 

the continuum. Therefore, when the flow is supersonic, there is no way the flow can know the 

details of what it has to encounter. If it encounters an obstacle, the flow is committed to a 

sudden, discontinuous change resulting in loss of speed and increase in pressure and 

temperature. This is idea of shockwaves. They are discontinuities that form in order for the 

flow to meet some downstream conditions. If a supersonic flow never encounters something 

downstream, like an obstacle or back-pressure, shocks will never arise. Similarly, for subsonic 

flows can never generate shocks as any downstream obstacles or back-pressure is 

communicated upstream and the flow curves around the obstacle.    

2. Governing Equations 

The Navier-Stokes equations for an inviscid compressible flow in an arbitrary domain is 

𝜕(𝜌𝑢⃗ )

𝜕𝑡
+ ∇. [𝑢⃗ (𝜌𝑢⃗ )] + ∇𝑝 = 0 

where all symbols have their usual meaning. The Navier-Stokes equation is supplemented with 

the conservation of mass 

𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑢⃗ ) = 0  

Conservation of total energy for an inviscid compressible flow gives 

𝜕(𝜌𝐸)

𝜕𝑡
+ ∇. [𝑢⃗ (𝜌𝐸)] + ∇. (𝑝𝑢⃗ ) = 0 

where the total energy density 𝐸 = 𝑒 + |𝑢⃗ |/2 with 𝑒 the specific internal energy. 

The 3 equations are supplemented with an equation of state which is the isentropic relation 

𝑑𝑝

𝑑𝜌
= (

𝜕𝑝

𝜕𝜌
)
𝑠

= 𝑎2 

where 𝑎 is the speed of sound. 

2.1. Quasi-One-Dimensional Flow 

The flow through a variable-area duct is three-dimensional in reality. But with the quasi-one-

dimensional assumption, the flow through the area-variable duct varies only as a function of 𝑥, 

i.e., 𝑢 = 𝑢(𝑥), 𝑝 = 𝑝(𝑥), etc. This assumption that flow properties are uniform across any 

given cross section represent values that are some kind of mean of the actual flow properties 

distributed over the cross section clearly shows that the quasi-one-dimensional flow is an 

approximation to the actual physics of the flow. 



 

2 
 

Consider an incremental volume as shown in fig. 1.  

 
Figure 1. Incremental Volume [1]. 

Considering this infinitesimal control volume for conservation of mass, momentum and 

energy equation, and a few algebraic simplifications we get 

 
𝑑(𝜌𝑢𝐴) = 0, (1) 

 

 
𝑑𝑝 = −𝜌𝑢 𝑑𝑢, (2) 

 
𝑑ℎ + 𝑢 𝑑𝑢 = 0 (3) 

 

where ℎ is the specific enthalpy. 

Equations (1) and (2) along with the isentropic relation gives 

 𝑑𝐴

𝐴
= (𝑀2 − 1)

𝑑𝑢

𝑢
 (4) 

 

Equation (4) is called the area-velocity relation. It can be inferred from Equation (4) that for a 

gas to expand isentropically from subsonic to supersonic speeds, it must flow through a 

convergent-divergent duct. 

2.1.1. Analysis of Normal Shock Waves 

Consider a standing normal shock in a section of a varying area as shown in fig. 2. The control 

volume includes the shock wave and infinitesimal amount of fluid on either side of the shock. 

Since the shock wave is very thin (of the order 10−6 m), the control volume is extremely thin 

allowing for the following assumptions without introducing error in the analysis: 

1. The area on both sides of the shock can be considered to be equal. 

2. There is negligible surface contact with walls and thus the frictional effects can be 

neglected.     
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Figure 2. Control volume for shock analysis [3]. 

The flow is assumed to be steady, adiabatic one-dimensional flow. 

The continuity equation is 

𝜌1𝑈1 = 𝜌2𝑈2 

The conservation of momentum gives 

𝑝1 + 𝜌1𝑈1
2 = 𝑝2 + 𝜌2𝑈2

2 

The conservation of energy gives 

ℎ1 +
𝑈1

2

2
= ℎ2 +

𝑈2
2

2
 

where all symbols have their usual meaning. 

The perfect gas equation of state assuming constant specific heats gives, 

ℎ = ∫ 𝑐𝑝𝑑𝑇 = (
𝛾𝑅

𝛾 − 1
)𝑇

𝑇

0

        𝑎𝑛𝑑, 𝑝 =  𝜌𝑅𝑇  

With the above equations, the problem is fully defined. Rigorous algebraic simplification of 

the above equations give the normal shock relations as below. 

Mach number behind the shock 

𝑀2
2 =

𝑀1
2 +

2
𝛾 − 1

2𝛾
𝛾 − 1

𝑀1
2 − 1 
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Temperature ratio 

𝑇2

𝑇1
=

1 +
𝛾 − 1

2
𝑀1

2

1 +
𝛾 − 1

2
𝑀2

2
 

Pressure ratio 

𝑝2

𝑝1
=

1 + 𝛾𝑀1
2

1 + 𝛾𝑀2
2 

Density and velocity ratio 

𝜌2

𝜌1
=

𝑈1

𝑈2
=

(𝛾 + 1)𝑀1
2

(𝛾 − 1)𝑀1
2 + 2

 

The above shock relations and the isentropic relations are used in the nozzle design and 

problem setup in section 3.3.  

 

3. Implementation in OpenFOAM 

3.1. Problem Statement  

The problem considers steady, inviscid, non-heat-conducting flow of air through a nozzle 

connected to a reservoir. The pressure and temperature in the reservoir is 30 bar and 298 K 

respectively. Air from the reservoir is forced through a nozzle, described in section 3.2, with a 

back-pressure at the exit of the nozzle. Calculation of the back-pressure is described in section 

3.3.  

3.2. Geometry & Meshing  

A nozzle is connected to the reservoir as shown in fig. 3. The height of the nozzle at the throat 

is half of that at the exit. The reservoir is 0.37 X 0.385 m along 𝑥 and 𝑦 direction respectively. 

The height of the nozzle at the exit is 0.03 m.   

The meshing is done using OpenFOAM utility blockMesh. The geometry is divided into 8 

blocks and each block has its own simpleGrading mesh. The mesh is inflated along 𝑥 and 𝑦 

direction. Mesh is coarse in the reservoir except in the area connecting the nozzle. The mesh is 

refined throughout the nozzle. 

Only one cell is considered alone the 𝑧 direction making the simulation 2D in 𝑥𝑦-plane. 
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Figure 3. The configuration of pressure flow through a nozzle connected to a reservoir. 

The meshing is shown in fig. 4. 

 
Figure 4. Meshing of the geometry. 

The intense density of the mesh throughout the nozzle is clearly indicated in fig. 4. 

3.3. Initial & Boundary Conditions  

The boundary conditions for various faces are described below: 

a) Inlet: The left face of the reservoir 

 

Pressure (𝑝) 30 bar = 3000000 Pa 

Temperature (𝑇) 298 K 

Velocity vector (𝑢⃗ ) Zero Gradient 
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b) Outlet: The right face of the nozzle 

 

Pressure (𝑝) 𝑝𝑜𝑢𝑡 

Temperature (𝑇) Zero Gradient 

Velocity vector (𝑢⃗ ) Zero Gradient 

 

c) Bottom: The base of the geometry 

 

Pressure (𝑝) Symmetry Plane 

Temperature (𝑇) Symmetry Plane 

Velocity vector (𝑢⃗ ) Symmetry Plane 

 

d) Nozzle: The upper and right faces of the reservoir and the upper face of the nozzle 

 

Pressure (𝑝) Zero Gradient 

Temperature (𝑇) Zero Gradient 

Velocity vector (𝑢⃗ ) Slip 

 

The inlet pressure and temperature is assigned initially for the calculation. A velocity of 7 m/s 

is used for initial condition.  

3.3.1. Calculation of Nozzle Exit Pressure 

The aim is to generate a shock in the nozzle section. The ratio of exit area to that of the throat 

is  

𝐴𝑒/𝐴𝑡ℎ𝑟𝑜𝑎𝑡  = 2 

But the flow is sonic at the throat. Therefore, 𝐴∗ = 𝐴𝑡ℎ𝑟𝑜𝑎𝑡. 

The shock should be generated in the nozzle such that, at the location of the shock 

1 <
𝐴

𝐴∗
< 2 

Considering 𝐴/𝐴∗ = 1.53, the isentropic flow relations establishes a flow of 𝑀 = 1.88 before 

the shock.  

Using the shock relations derived in section 2.1.1, for 𝑀 = 1.88, 𝑝0 = 3 bar and 𝑇0 =

298𝐾, the exit pressure is calculated as 

𝑝𝑜𝑢𝑡 = 2.0674 MPa 

This is the boundary condition imposed at the nozzle exit. 
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3.4. Solver  

The flow through a pressure driven nozzle governing equations, as described in section 2, are 

solved using rhoCentralFoam [2]. The thermophysical properties of air, assuming perfect gas, 

is used. The simulation type is laminar. 

 

4. Results  

The simulations are run on OpenFOAM 5.0 and the post processing is done using ParaView. 

The steady-state pressure field is shown in fig. 5.  

  
Figure 5. Steady-state pressure field. 

The standing normal shock is clearly visible in the nozzle section. The contours also indicate 

the sudden rise in pressure across the shock wave.  

The Mach number and pressure variation along the 𝑥-axis just above the bottom face is shown 

in fig. 6 and 7 respectively. 

The plots clearly show the drop in Mach number and the rise in pressure and temperature across 

the shock. 

The shock is located at 𝑥 = 0.504 m. The area of the nozzle at the corresponding section is 

given by 𝐴/𝐴∗ = 1.52, which is very close to the assumed 𝐴/𝐴∗ = 1.53 for calculation.  
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Figure 6. Variation of Mach number. 

The post-shock Mach number from the plot is 𝑀 = 0.59. The value is fairly close the one 

calculated using the normal shock relation 𝑀 = 0.5996. 

 
Figure 7. Variation of pressure. 

The post-shock pressure is 18.3 bar, which gives 𝑝2/𝑝𝑜1 = 0.61. The same calculated using 

the normal shock relation is 𝑝2/𝑝𝑜1 = 0.609. 
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5. Conclusion 

The flow of air through a pressure driven nozzle connected to a reservoir was simulated using 

OpenFOAM solver rhoCentralFoam. The simulation produced expected result. The shock 

location matched with the analytical solution. The Mach number and pressure changes across 

the shock also matched with the ones calculated using normal shock relations. The simulation 

also showed the flow stagnation in the reservoir. 
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