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1. Introduction 

When a horizontal layer of fluid is heated from below, the fluid develops regular patterns called 

Bénard cells. This type of natural convection is called Rayleigh-Bénard convection. Because 

of the ease of analytical and experimental analysis, it is one of the most studied convection 

phenomena. 

Around 1900, Bénard made some quantitative experiments on thermal convection. He melted 

about 1mm deep layer of wax in a metal dish by heating the base. There was no motion of 

liquid wax when it was heated just enough to melt all the fax. But when the temperature was 

raised above a certain critical temperature, Bénard observed hexagonal patterns develop on the 

surface of the wax and deduced the presence of convection cells below. Rayleigh modelled the 

problem in 1916 and treated it by the use of the theory of hydrodynamic stability. 

The idea behind the Rayleigh-Bénard instability is to take a uniform homogeneous fluid 

sandwiched between two plates, and to heat the bottom plate so that a density gradient emerges 

with a cooler, denser layer lying on top of a hotter, less dense layer, thereby inducing an 

unstable stratification. Beyond a threshold values, this configuration becomes unstable 

triggering a convective motion that counteracts the unstable stratification. 

 

2. Governing Equations 

The Navier-Stokes equations of incompressible flow in an arbitrary domain is 

𝜌 (
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
) = −

𝜕𝑝

𝜕𝑥𝑖
+ 𝜇∇2𝑢𝑖 + 𝜌𝑔𝑖 , 

where all symbols have their usual meaning and the gravity vector is (𝑔1, 𝑔2. 𝑔3) = (0, −𝑔, 0) 

such that gravity points in the negative 𝑦-axis. The Navier-Stokes equation is supplemented 

with the incompressibility condition 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑖

(𝜌𝑢𝑖) = 0. 

To close the Navier-Stokes equation, further conditions are required. It is necessary to prescribe 

the behaviour of the density function. In the present application, i.e. the behaviour of fluid in 

presence of temperature gradient, it would be sensible to focus on a relationship between 

temperature (𝑇) and density. The simplest model is a linear relation: 

𝜌 = 𝜌0 + 𝛿𝜌, 𝛿𝜌 = −𝜌0𝛼(𝑇 − 𝑇0), 

where 𝜌0 is the reference density, 𝛿𝜌 is a fluctuation which depends linearly on temperature 

and 𝑇0 is the reference temperature. The quantity 𝛼 > 0 is the coefficient of volume expansion. 

The evolution of temperature field 𝑇(𝒙, 𝑡) should also be specified. This can be accurately 

modelled by an advection-diffusion equation 
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𝜕𝑇

𝜕𝑡
+ 𝑢𝑖

𝜕𝑇

𝜕𝑥𝑖
= 𝜅∇2𝑇, 

where 𝜅 > 0 is the thermal diffusivity. Assembling all equations into a single mathematical 

model: 

 

𝜌 (
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
) = −

𝜕𝑝

𝜕𝑥𝑖
+ 𝜇∇2𝑢𝑖 + 𝜌𝑔𝑖 , (1a) 

 𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑖

(𝜌𝑢𝑖) = 0, (1b) 

 𝜌 = 𝜌0 + 𝛿𝜌, 𝛿𝜌 = −𝜌0𝛼(𝑇 − 𝑇0), (1c) 

 
𝜕𝑇

𝜕𝑡
+ 𝑢𝑖

𝜕𝑇

𝜕𝑥𝑖
= 𝜅∇2𝑇. (1d) 

Boussinesq pointed out that there are many situations of practical occurrence in which the basic 

equations can be simplified considerably. These situations occur when variability of density 

and various coefficients is due to moderate variation in temperature. For most fluids that are 

considered for Rayleigh- Bénard convection, the coefficient of volume expansion (𝛼) is small 

that variation in density variation need to be considered only in the buoyancy (gravity) term. 

This is called the Boussinesq approximation. With this approximation, equations (1a)-(1b) 

simplify to 

 
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
= −

1

𝜌0

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈∇2𝑢𝑖 + (1 +

𝛿𝜌

𝜌0
) 𝑔𝑖 , 𝜈 = 𝜇/𝜌0, (2a) 

 𝜕𝑢𝑖

𝜕𝑥𝑖
= 0, (2b) 

while equations (1c) and (1d) remain unchanged. 
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3. Implementation in OpenFOAM 

3.1. Problem Statement  

The problem considers the Rayleigh-Bénard convection for two fluids. The first case is a gas 

whose properties (viscosity, coefficient of volume expansion, Prandtl number) resemble that 

of air at 300 K. In the second case, Rayleigh-Bénard convection in water at 300 K is analysed.  

The temperature difference and spacing between the hot and cold plates are the same for both 

cases, 1 K and 1 m. In fig. 1, this would be 𝜃0 = 300 K, 𝜃1 = 301 K and 𝑑 = 1 m.    

 
Figure 1. The configuration of Rayleigh-Bénard convection [1]. 

The reference temperature for the problem is taken as the average of the temperatures of two 

plates, i.e. 300.5 K. 

3.2. Geometry & Meshing  

A block of 9 x 1 x 2 m is considered. The mesh discretization used was simplegrading with 

900 x 100 x 1 cells. The simulation is 2D in 𝑥𝑦-plane. The geometry is shown in fig. 2. 

 
Figure 2. The geometry used for Rayleigh-Bénard convection. 



 

4 
 

3.3. Initial & Boundary Conditions  

The values of various properties used in the simulation is as follows. 

a) Temperature 

The bottom plate is fixed at 301 K and the top plate at 300 K. The side walls are imposed with 

zero gradient condition. 

b) Pressure 

The initial internal pressure field is set to zero throughout the fluid. The values as marched in 

time is updated by the solver. 

c) Velocity 

The initial internal velocity field is set to zero throughout the fluid. The side walls as well as 

the top and bottom plates are imposed with no-slip condition. 

The initial temperature field is shown in fig. 3. 

 
Figure 3. Initial temperature distribution. 

3.4. Solver  

The Rayleigh-Bénard convection governing equations, (2a)-(2b) and (1c)-1(d), are solved 

using buoyantBoussinesqPimpleFoam. This is one of the many solvers for solving heat transfer 

problems in OpenFOAM. In this particular solver, the heat transfer problems are solved in 

presence of gravity body force. The mass and momentum equations are as derived in section 

2. This solver also uses the Boussinesq approximation to simplify the mass and momentum 

equations. The k-Epsilon model is used for turbulence modelling in the simulation. 
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4. Results  

The simulations are run on OpenFOAM 5.0 and the post processing is done using ParaView.  

4.1. Case 1: Air 

The temperature and velocity fields in the 𝑥𝑦-plane are shown in fig. (4) and (5). 

 
Figure 4. Temperature and velocity fields at t = 800 seconds. 

The velocity field in fig. 4 clearly captures the onset of Bénard cell formation in the fluid. 

 
Figure 5. Temperature and velocity fields at t = 3000 seconds. 
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The streamlines in the 𝑥𝑦-plane are shown in fig. (6). 

 
Figure 6. Streamlines at t = 3000 seconds. 

The streamlines clearly indicate the presence of 9 Bénard cells in the 𝑥𝑦-plane. 

 

4.2. Case 2: Water 

The temperature and velocity fields in the 𝑥𝑦-plane are shown in fig. (7). 

 
Figure 7. Temperature and velocity fields at t = 600 seconds. 

The temperature and velocity fields in fig. 7 captures the onset of convection in water. 

The streamlines in the 𝑥𝑦-plane are shown in fig. 8. The streamlines clearly indicate the 

presence of 9 Bénard cells in the 𝑥𝑦-plane. The cells are distorted compared to ones observed 

in the previous case (air).  

The temperature and velocity fields at the same time are shown in fig. (9). 
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Figure 8. Streamlines at t = 1800 seconds. 

 
Figure 9. Temperature and velocity fields at t = 1800 seconds. 

 

5. Conclusion 

The Rayleigh-Bénard instability develops when the Rayleigh number of the fluid exceeds a 

certain critical value. In both the cases considered (rigid-rigid), that value predicted by linear 

stability analysis [2] is 1708. Therefore, while considering the temperature differences in both 

the cases, care was taken so that the Rayleigh number is greater than the critical value. Since 

the Boussinesq approximation is valid only for small temperature difference, the temperature 

difference was chosen to be 1 K which also gives a Rayleigh number greater than 1708. 

The formation of Bénard cells are well captured in both cases. The number of cells is 

proportional to the aspect ratio used. An aspect ratio of 9 yielded 9 cells in the plane. Also the 

temperature distribution compares well with the experimental results. 
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