

1

Report

On

Implementing custom boundary conditions using

‘codedFixedValue’ boundary condition in OpenFOAM

Submitted by

Mohamed Adnan K N

Working Professional

Mentored by

Mr. John Pinto

Department of Mechanical Engineering, Indian Institute of Technology, Bombay

Under the guidance of

Dr. Harikrishnan S

Division of Mechanical Engineering, School of Engineering, Cochin University of

Science and Technology, Kochi, Kerala, India

2

1. Introduction

 In Computational Fluid Dynamics, boundary conditions play a crucial role in

defining the behavior of physical systems. Among these, the fixed value boundary

condition is widely used for its simplicity and effectiveness in various applications.

This report focuses on the ‘CodedFixedValue Boundary Condition’, a method that

integrates coding techniques to enhance the implementation and versatility of fixed

value boundary conditions. With this utility, various complex boundary conditions can

be implemented in OpenFOAM without using external libraries (which are not

available with standard OpenFOAM distribution) or high-level programming

(modifying existing OpenFOAM libraries). The ‘CodedFixedValue’ boundary

condition is the most user-friendly and accessible method available in the OpenFOAM

library. It allows the user to embed a piece of C++ code directly within the boundary

condition files for implementing complex custom boundary conditions that are required

for simulations. This report demonstrates various applications of ‘CodedFixedValue’

boundary conditions with examples. Section 2 introduces a specific CFD problem and

outlines the necessary case setup for demonstrating the application of the

"CodedFixedValue" boundary condition. Section 3 outlines the numerical method used

in this study, including the governing equations and boundary conditions. Section 4

provides a detailed demonstration of how the 'CodedFixedValue' utility is applied to

implement various boundary conditions. Section 5 concludes the report with a

summary of findings and potential future developments.

2. Problem Statement

To illustrate the applications of the 'CodedFixedValue' boundary condition, a

two-dimensional lid-driven cavity with mixed convection was chosen as a

representative problem. The simulation conditions outlined in [1] and [2] were adopted

for this study. Figure 1 presents the schematic diagram of the computational domain.

The bottom, leftAndRight walls were assumed to have no-slip conditions, while a

velocity boundary condition was applied to the top wall. Regarding thermal boundary

conditions, the bottom wall was considered hot, the top wall cold, and the remaining

walls are considered as adiabatic. Table 1 summarizes the geometric and flow details

3

used in this study. The 'CodedFixedValue' utility was employed to implement various

boundary conditions as follows:

 Time-varying boundary conditions :- imposing time dependent boundary

condition at top wall.

 Space varying boundary conditions:- Imposing a spatially varying

velocity profile at top wall.

 Boundary conditions with conditional statements:- Varying boundary

conditions based on user-defined conditional statement given by user.

 Output based input boundary conditions:- Boundary conditions that

adjusts/vary based on the results obtained from previous time step

solutions.

Figure 1: Schematic view of Case Setup

Bottom Wall

le
ft

A
n

d
R

ig
h

t
w

al
l

leftA
n

d
R

ig
h

t w
all

Top Wall

4

Table 1: Details of geometry and flow conditions

3. Numerical Methods

In the report, the buoyantPimpleFoam (Boussinesq’s approximation) solver

from the OpenFOAM was used to model the buoyancy-driven flow. The solver

discretizes the governing equations using the finite volume method (FVM), with

implicit time-stepping to ensure stability. “Gauss linear” scheme for gradients and

“Gauss upwind” for convective terms is used to maintain numerical stability. For the

diffusion terms, the “Gauss linear corrected” scheme was used to enhance accuracy.

The pressure-velocity coupling was handled by the PIMPLE algorithm, combining the

PISO and SIMPLE algorithms to correct the pressure field and ensure mass

conservation iteratively. The flow was considered to be laminar and hence turbulence

fields were ignored. Convergence criteria considered for this case were 1e-6 to ensure

accurate and stable solutions. Probe function utility has been used to visualize field

variations over a period of time. By default, OpenFOAM employs linear interpolation

Geometry Length of the cavity(x) = 1m

Height of the cavity (y) = 1m

Depth of the cavity (z) = 1m

Mesh size 81× 81 × 1 cells

Reynolds number Re = 100

Thermal expansion

coefficient

𝛽𝑇,𝑎𝑖𝑟 = 0.00317 𝐾−1

Reference Temperature

Non-dimensional

temperature

𝑇0 = 315K

𝜃 =
(T −𝑇𝑐𝑜𝑙𝑑)

(𝑇ℎ𝑜𝑡−𝑇𝑐𝑜𝑙𝑑)
.

Reference length scale L = 1m

Prandtl number Pr = 0.71

Grashof number G𝑟𝑇 =
𝑔𝛽(𝑇ℎ𝑜𝑡− 𝑇𝑐𝑜𝑙𝑑)𝐿3

𝜈2

G𝑟𝑇 = 100

5

to estimate field values at probe locations based on the values at neighbouring cell

centers. Linear interpolation scheme produces inaccurate results at boundaries where

field values change rapidly over time. To mitigate this issue, the cellPoint interpolation

scheme is used to obtain field values at probe locations. This scheme identifies the cell

center that is closest to the probe location. The field value at the probe location is taken

directly from this cell center instead of interpolation thus yielding accurate results.

3.1 Governing Equations

3.1.1 Mass conservation equation

The continuity equation is expressed as:
∂ρ

∂t
+ ∇. (𝜌𝑈) = 0 (1)

3.1.2 Momentum Conservation Equation

The solver is designed for incompressible flow, assuming that the density (𝜌) remains

constant throughout the flow field, except when considering buoyancy effects in the

source term and expressed as follows:

∂U

∂t
+ ∇. (𝑈𝑈) = −

1

𝜌0
(∇𝑝 − 𝜌𝑔) + ∇. [𝜈𝑒𝑓𝑓(∇𝑈 + (∇𝑈)𝑇)] (2)

where, 𝜌 = 𝜌0[1 − 𝛽(𝑇 − 𝑇0)], 𝜌0, 𝑇0 is reference density and temperature

respectively. In terms of implementation in OpenFOAM, the pressure gradient and

gravity force terms are rearranged in the following form:

 −∇𝑝 + 𝜌𝑔 = −∇𝑝𝑟𝑔ℎ − (𝑔. 𝑟)∇𝜌 (3)

3.1.3 Energy equation

 The energy conservation equation for internal energy (e) is expressed as:

∂(ρ𝑒)

∂t
+ ∇. (ρ𝑈𝑒) +

𝜕(𝜌𝐾)

𝜕𝑡
+ ∇. (ρUK) + ∇. (pU) = ∇. (𝛼𝑒𝑓𝑓∇𝑒) + 𝜌𝑢. 𝑔 (4)

 where, 𝛼𝑒𝑓𝑓 =
𝜌𝜈𝑡

𝑃𝑟𝑡
 +

𝜇

𝑃𝑟
.

3.2 Boundary conditions

In our simulations, we applied a codedFixedValue boundary condition to the top face

of the cavity to specify a custom boundary condition. In general, patch names and their

corresponding boundary condition type were presented in Tables 2 and 3. Other

boundary fields are set to be zeroGradient.

6

Table 2: Boundary conditions for “U” field

Table 3: Boundary conditions for “T” field

4. Demonstrations

To illustrate the possibilities offered using codedFixedValue in OpenFOAM,

let's explore several case studies that demonstrate its application in various scenarios.

Each example showcases how ‘codedFixedValue’ can be used to define dynamic and

complex boundary conditions efficiently.

4.1 Time-varying boundary condition

In this example, we will impose a time-varying velocity profile on the top wall given

by equation u = 𝑢0 sin(𝜔𝜏), where, 𝜏 is defined as the non-dimensional time (𝜏 =
𝑢0 𝑡

𝐻
)

and 𝜔 is the oscillation frequency which is taken as 1. We apply a time-varying

boundary condition on the top patch of the cavity. The velocity oscillates sinusoidally

in the time with a frequency defined by omega, amplitude defined by A, and scaled by

non-dimensional time 𝜏. Time-varying velocity boundary conditions can be

Patch name Boundary condition

top codedFixedValue

bottom noSlip

leftAndright noSlip

frontAndBack empty

Patch name Boundary condition

top 300 K

bottom 330 K

leftAndright zeroGradient

frontAndBack empty

7

implemented in OpenFOAM by simply copying and pasting the code snippet shown in

Figure 2 into the 0/U file.

Figure 2: Code snippet of time-varying velocity profile using

‘codedFixedValue’ boundary condition

Probe function utility has been used to visualize the imposed boundary condition

during the simulation. Figure 3 indicates the code snippet corresponding to the probe

function from the ‘controlDict’ file and the variation of the x-component of velocity

with time for one of the locations at the top wall.

 (a)

8

 (b)

Figure 3: (a) Probe punction code snippet and, (b) imposed time varying

boundary condition at top wall (U_x vs Time at (0.5,1,1))

4.2 Space varying boundary condition

In this example, we will impose a spatially varying velocity profile on the top wall.

The velocity will vary linearly from 0 to 1 across all the faces on the top wall based on

the x location of the face center. Space-varying velocity boundary conditions can be

implemented in OpenFOAM by simply copying and pasting the code snippet shown in

Fig. 4 into the 0/U file.

Figure 4: Code snippet of space varying velocity profile using

‘codedFixedValue’ boundary condition

9

Plot over line function in ParaView to visualize the variation of simulation results along

a specific line in the domain. In this case, velocity varies across the top faces of the

cavity. Specifically, we plotted the results from the points (0, 1, 1) to (1, 1, 1). Figure

5 illustrates the variation of the x-component of velocity along the specified line.

Figure 5: Imposed space varying boundary condition at top wall (U_x vs X) from

point (0,1,1) to (1,1,1)

4.3 Boundary conditions with conditional statements

4.3.1 Time dependent boundary conditions with conditional statements

In this example, we will impose time-dependent velocity on the top wall. Specifically,

we will:

 Apply a constant velocity u(9.66,0,0) for the first 4 seconds of the simulation.

 Switch to sinusoidal velocity after the first 4 seconds given by equation u = 𝑢0

sin(𝜔𝜏), where, 𝜏 is defined as the non-dimensional time ((𝜏) =
𝑢0 𝑡

𝐻
) and 𝜔 is

the oscillation frequency which is taken as 1.

Time-dependent velocity boundary conditions can be implemented in OpenFOAM by

simply copying and pasting the code snippet shown in Fig. 6 into the 0/U file.

10

Figure 6: Code snippet of implementing time dependent velocity using

 ‘codedFixedValue’ boundary condition

Probe function utility has been used to visualize the imposed boundary condition

during the simulation similar to case 4.1. Figure 7 illustrates the variation of the x-

component of velocity with time for one of the locations at the top wall.

Figure 7: Imposed time dependent boundary condition at top wall

(U_x vs Time at (0.5,1,1))

11

4.3.2 Impulse condition

In this example, we will impose a sudden change or impulse in the velocity over a short

period. Specifically, we will

 Apply zero velocity at t = 0

 Switch to constant velocity u(9.66,0,0) between t = 4s and t = 5s

 Switch back to zero velocity after t = 5s

Velocity impulse boundary conditions can be implemented in OpenFOAM by simply

copying and pasting the code snippet shown in Fig. 8 into a 0/U file.

Figure 8: Code snippet of implementing velocity impulse using

‘codedFixedValue’ boundary condition

Probe function utility has been used to visualize the imposed boundary condition

during the simulation similar to case 4.1. Figure 9 illustrates the variation of the x-

component of velocity with time for one of the locations at the top wall.

12

Figure 9: Imposed velocity impulse boundary condition at top wall

(U_x vs Time at (0.5,1,1))

4.3.3 Output-based input

 A simulation variable-dependent boundary condition is one where the boundary value

varies based on a specific simulation variable. In this case, we will change the velocity

boundary condition based on the volume averaged domain temperature values.

Specifically, we will apply the following velocity boundary condition at the top wall;

 Apply constant velocity U (2,0,0) if the volume averaged domain temperature is

≥315 K

 Apply constant velocity U (9.66,0,0) if the volume averaged domain temperature

is < 315 K

The following code as shown in Fig. 10 (a) should be there in the 0/U file to properly

implement this case. To verify our results, we need to calculate the volume averaged

temperature field in the domain. For storing the temperature field, we need to make

some modifications in the system/controlDict file. Figure 10 (b) shows the code snippet

that needs to be added for calculating the volAverage temp field.

13

 (a)

 (b)

Figure 10: (a) Implementation of simulation variable dependent condition, (b)

Implementation of volAverage Temperature field

Probe function utility has been used to visualize the imposed boundary condition

during the simulation similar to case 4.1. Figure 11 illustrates the variation of the x-

component of velocity with time for one of the locations at the top wall and the

variation of volume averaged temperature with time.

14

Figure 11: Variation of Volume averaged temperature with time, and

Variation of x-component of velocity at top wall (0.5,1,1) with time

5. Conclusion

This report has shown the applications of ‘codedFixedValue’ boundary

conditions in OpenFOAM. The ‘codedFixedValue’ boundary condition offers

significant advantages over traditional ‘fixedValue’ conditions by enabling dynamic

control over boundary values based on user-defined code. Changing boundary

conditions in real-time based on simulation results, and variables and implementing

conditions that vary over time to capture transient phenomena opens doors to more

realistic and intricate simulations. By leveraging the capabilities of ‘codedFixedValue’,

researchers and engineers can achieve a greater degree of control over their

OpenFOAM simulations, leading to more accurate and insightful results.

Acknowledgements

I am extremely grateful to the FOSSEE team for giving me the opportunity to

participate in a summer fellowship. I am also deeply indebted to my advisor Dr.

Harikrishnan S, for his unwavering support, guidance, and encouragement

throughout the fellowship. His expertise in the field of Computational Fluid Dynamics

15

(CFD) has been instrumental in shaping my understanding of this complex domain and

instilling my curiosity to do more. I would also like to extend my heartfelt thanks to

my mentor, Mr. John Pinto, for his mentorship and profound insights into

OpenFOAM. His support has been crucial in the successful completion of my report.

REFERENCES

[1] Huang, J., Carrica, P.M. and Stern, F. (2010). A method to compute ship exhaust

plumes with waves and wind. International Journal for Numerical Methods in Fluids,

68(2), pp.160–180

[2] www.openfoam.com. (n.d.). OpenFOAM: User Guide: Tutorials. [online]

Available at: https://www.openfoam.com/documentation/guides/v2112/doc/guide-

tutorials.html [Accessed 20 Jul. 2024].

	Mohamed Adnan K N
	Dr. Harikrishnan S

