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1. Introduction 

          In Computational Fluid Dynamics, boundary conditions play a crucial role in 

defining the behavior of physical systems. Among these, the fixed value boundary 

condition is widely used for its simplicity and effectiveness in various applications. 

This report focuses on the ‘CodedFixedValue Boundary Condition’, a method that 

integrates coding techniques to enhance the implementation and versatility of fixed 

value boundary conditions. With this utility, various complex boundary conditions can 

be implemented in OpenFOAM without using external libraries (which are not 

available with standard OpenFOAM distribution) or high-level programming 

(modifying existing OpenFOAM libraries). The ‘CodedFixedValue’ boundary 

condition is the most user-friendly and accessible method available in the OpenFOAM 

library. It allows the user to embed a piece of C++ code directly within the boundary 

condition files for implementing complex custom boundary conditions that are required 

for simulations. This report demonstrates various applications of ‘CodedFixedValue’ 

boundary conditions with examples. Section 2 introduces a specific CFD problem and 

outlines the necessary case setup for demonstrating the application of the 

"CodedFixedValue" boundary condition. Section 3 outlines the numerical method used 

in this study, including the governing equations and boundary conditions. Section 4 

provides a detailed demonstration of how the 'CodedFixedValue' utility is applied to 

implement various boundary conditions. Section 5 concludes the report with a 

summary of findings and potential future developments.  

 

2. Problem Statement 

To illustrate the applications of the 'CodedFixedValue' boundary condition, a 

two-dimensional lid-driven cavity with mixed convection was chosen as a 

representative problem. The simulation conditions outlined in [1] and [2] were adopted 

for this study. Figure 1 presents the schematic diagram of the computational domain. 

The bottom, leftAndRight walls were assumed to have no-slip conditions, while a 

velocity boundary condition was applied to the top wall. Regarding thermal boundary 

conditions, the bottom wall was considered hot, the top wall cold, and the remaining 

walls are considered as adiabatic. Table 1 summarizes the geometric and flow details 
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used in this study. The 'CodedFixedValue' utility was employed to implement various 

boundary conditions as follows: 

 Time-varying boundary conditions :- imposing time dependent boundary 

condition at top wall. 

 Space varying boundary conditions:- Imposing a spatially varying 

velocity profile at top wall. 

 Boundary conditions with conditional statements:- Varying boundary 

conditions based on user-defined conditional statement given by user. 

 Output based input boundary conditions:- Boundary conditions that 

adjusts/vary based on the results obtained from previous time step 

solutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Schematic view of Case Setup 
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Table 1: Details of geometry and flow conditions 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Numerical Methods                          

In the report, the buoyantPimpleFoam (Boussinesq’s approximation) solver 

from the OpenFOAM was used to model the buoyancy-driven flow. The solver 

discretizes the governing equations using the finite volume method (FVM), with 

implicit time-stepping to ensure stability. “Gauss linear” scheme for gradients and 

“Gauss upwind” for convective terms is used to maintain numerical stability. For the 

diffusion terms, the “Gauss linear corrected” scheme was used to enhance accuracy. 

The pressure-velocity coupling was handled by the PIMPLE algorithm, combining the 

PISO and SIMPLE algorithms to correct the pressure field and ensure mass 

conservation iteratively. The flow was considered to be laminar and hence turbulence 

fields were ignored. Convergence criteria considered for this case were 1e-6 to ensure 

accurate and stable solutions. Probe function utility has been used to visualize field 

variations over a period of time. By default, OpenFOAM employs linear interpolation 

Geometry  Length of the cavity(x) = 1m 

Height of the cavity (y) = 1m 

Depth of the cavity (z) =  1m 

Mesh size 81× 81 × 1 cells 

Reynolds number  Re = 100 

Thermal expansion 

coefficient 

𝛽𝑇,𝑎𝑖𝑟 = 0.00317 𝐾−1 

Reference Temperature  

Non-dimensional 

temperature 

𝑇0 = 315K 

𝜃 = 
(T −𝑇𝑐𝑜𝑙𝑑)

( 𝑇ℎ𝑜𝑡−𝑇𝑐𝑜𝑙𝑑)
. 

Reference length scale  L = 1m 

Prandtl number Pr = 0.71 

Grashof number G𝑟𝑇 = 
𝑔𝛽(𝑇ℎ𝑜𝑡− 𝑇𝑐𝑜𝑙𝑑)𝐿3

𝜈2
 

G𝑟𝑇 = 100 
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to estimate field values at probe locations based on the values at neighbouring cell 

centers.  Linear interpolation scheme produces inaccurate results at boundaries where 

field values change rapidly over time. To mitigate this issue, the cellPoint interpolation 

scheme is used to obtain field values at probe locations. This scheme identifies the cell 

center that is closest to the probe location. The field value at the probe location is taken 

directly from this cell center instead of interpolation thus yielding accurate results. 

 

3.1 Governing Equations 

3.1.1 Mass conservation equation 

The continuity equation is expressed as:  
∂ρ

∂t
+  ∇. (𝜌𝑈) = 0                                          (1) 

3.1.2  Momentum Conservation Equation 

The solver is designed for incompressible flow, assuming that the density (𝜌) remains 

constant throughout the flow field, except when considering buoyancy effects in the 

source term and expressed as follows: 

   
∂U

∂t
+  ∇. (𝑈𝑈) = −

1

𝜌0
(∇𝑝 −  𝜌𝑔) +  ∇. [𝜈𝑒𝑓𝑓(∇𝑈 + (∇𝑈)𝑇)]                                 (2)                                                            

where, 𝜌 =  𝜌0[1 − 𝛽(𝑇 − 𝑇0)], 𝜌0, 𝑇0 is reference density and temperature 

respectively. In terms of implementation in OpenFOAM, the pressure gradient and 

gravity force terms are rearranged in the following form: 

                   −∇𝑝 +  𝜌𝑔 =  −∇𝑝𝑟𝑔ℎ − (𝑔. 𝑟)∇𝜌                                                         (3) 

3.1.3 Energy equation 

        The energy conservation equation for internal energy (e) is expressed as: 

         
∂(ρ𝑒)

∂t
+  ∇. (ρ𝑈𝑒) +  

𝜕(𝜌𝐾)

𝜕𝑡
+  ∇. (ρUK) + ∇. (pU) =  ∇. (𝛼𝑒𝑓𝑓∇𝑒) +  𝜌𝑢. 𝑔                  (4) 

        where, 𝛼𝑒𝑓𝑓 = 
𝜌𝜈𝑡

𝑃𝑟𝑡
 + 

𝜇

𝑃𝑟
.  

 

3.2 Boundary conditions 

In our simulations, we applied a codedFixedValue boundary condition to the top face 

of the cavity to specify a custom boundary condition. In general, patch names and their 

corresponding boundary condition type were presented in Tables 2 and 3. Other 

boundary fields are set to be zeroGradient.  
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Table 2: Boundary conditions for “U” field 

 

 

 

 

                         

 

 

 

Table 3: Boundary conditions for “T” field 

 

 

 

 

 

 

 

4. Demonstrations 

To illustrate the possibilities offered using codedFixedValue in OpenFOAM, 

let's explore several case studies that demonstrate its application in various scenarios. 

Each example showcases how ‘codedFixedValue’ can be used to define dynamic and 

complex boundary conditions efficiently.  

 

4.1   Time-varying boundary condition  

In this example, we will impose a time-varying velocity profile on the top wall given 

by equation u = 𝑢0 sin(𝜔𝜏), where, 𝜏 is defined as the non-dimensional time (𝜏 =  
𝑢0 𝑡

𝐻
) 

and 𝜔 is the oscillation frequency which is taken as 1. We apply a time-varying 

boundary condition on the top patch of the cavity. The velocity oscillates sinusoidally 

in the time with a frequency defined by omega, amplitude defined by A, and scaled by 

non-dimensional time 𝜏. Time-varying velocity boundary conditions can be 

Patch name Boundary condition 

top codedFixedValue 

bottom noSlip 

leftAndright noSlip 

frontAndBack empty 

Patch name Boundary condition 

top 300 K 

bottom 330 K 

leftAndright zeroGradient 

frontAndBack empty 
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implemented in OpenFOAM by simply copying and pasting the code snippet shown in 

Figure 2 into the 0/U file.  

 

 

 

Figure 2: Code snippet of time-varying velocity profile using  

‘codedFixedValue’ boundary condition 

 

Probe function utility has been used to visualize the imposed boundary condition 

during the simulation. Figure 3 indicates the code snippet corresponding to the probe 

function from the ‘controlDict’ file and the variation of the x-component of velocity 

with time for one of the locations at the top wall. 

 

                            (a)  
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                           (b)  

 

Figure 3: (a) Probe punction code snippet and, (b) imposed time varying  

boundary condition at top wall (U_x vs Time at (0.5,1,1)) 

 

4.2    Space varying boundary condition 

In this example, we will impose a spatially varying velocity profile on the top wall. 

The velocity will vary linearly from 0 to 1 across all the faces on the top wall based on 

the x location of the face center. Space-varying velocity boundary conditions can be 

implemented in OpenFOAM by simply copying and pasting the code snippet shown in 

Fig. 4 into the 0/U file. 

 

 

 

 

 

 

 

 

 

Figure 4: Code snippet of space varying velocity profile using  

‘codedFixedValue’ boundary condition 
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Plot over line function in ParaView to visualize the variation of simulation results along 

a specific line in the domain. In this case, velocity varies across the top faces of the 

cavity. Specifically, we plotted the results from the points (0, 1, 1) to (1, 1, 1). Figure 

5 illustrates the variation of the x-component of velocity along the specified line.  

 

 

 

  

 

 

 

 

 

Figure 5:  Imposed space varying boundary condition at top wall (U_x vs X) from 

point (0,1,1) to (1,1,1) 

 

4.3        Boundary conditions with conditional statements 

4.3.1     Time dependent boundary conditions with conditional statements 

In this example, we will impose time-dependent velocity on the top wall. Specifically, 

we will: 

 Apply a constant velocity u(9.66,0,0) for the first 4 seconds of the simulation. 

 Switch to sinusoidal velocity after the first 4 seconds given by equation u = 𝑢0 

sin(𝜔𝜏), where, 𝜏 is defined as the non-dimensional time ((𝜏) =  
𝑢0 𝑡

𝐻
)  and 𝜔  is 

the oscillation frequency which is taken as 1.  

Time-dependent velocity boundary conditions can be implemented in OpenFOAM by 

simply copying and pasting the code snippet shown in Fig. 6 into the 0/U file. 
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Figure 6: Code snippet of implementing time dependent velocity using  

 ‘codedFixedValue’ boundary condition  

 

Probe function utility has been used to visualize the imposed boundary condition 

during the simulation similar to case 4.1.  Figure 7 illustrates the variation of the x-

component of velocity with time for one of the locations at the top wall. 

 

 

Figure 7: Imposed time dependent boundary condition at top wall  

(U_x vs Time at (0.5,1,1)) 
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4.3.2    Impulse condition 

In this example, we will impose a sudden change or impulse in the velocity over a short 

period. Specifically, we will  

 Apply zero velocity at t = 0  

 Switch to constant velocity u(9.66,0,0) between t = 4s and t = 5s 

 Switch back to zero velocity after t = 5s 

Velocity impulse boundary conditions can be implemented in OpenFOAM by simply 

copying and pasting the code snippet shown in Fig. 8 into a 0/U file. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Code snippet of implementing velocity impulse using  

‘codedFixedValue’ boundary condition 

 

Probe function utility has been used to visualize the imposed boundary condition 

during the simulation similar to case 4.1.  Figure 9 illustrates the variation of the x-

component of velocity with time for one of the locations at the top wall. 
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Figure 9: Imposed velocity impulse boundary condition at top wall  

(U_x vs Time at (0.5,1,1)) 

 

4.3.3 Output-based input  

 A simulation variable-dependent boundary condition is one where the boundary value 

varies based on a specific simulation variable.  In this case, we will change the velocity 

boundary condition based on the volume averaged domain temperature values. 

Specifically, we will apply the following velocity boundary condition at the top wall; 

 Apply constant velocity U (2,0,0) if the volume averaged domain temperature is 

≥315 K 

 Apply constant velocity U (9.66,0,0) if the volume averaged domain temperature 

is < 315 K 

The following code as shown in Fig. 10 (a) should be there in the 0/U file to properly 

implement this case. To verify our results, we need to calculate the volume averaged 

temperature field in the domain. For storing the temperature field, we need to make 

some modifications in the system/controlDict file. Figure 10 (b) shows the code snippet 

that needs to be added for calculating the volAverage temp field.    
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           (a)  

 

 

 

 

 

 

 

 

 

 

 

                        (b) 

 

Figure 10: (a) Implementation of simulation variable dependent condition, (b) 

Implementation of volAverage Temperature field 

 

Probe function utility has been used to visualize the imposed boundary condition 

during the simulation similar to case 4.1.  Figure 11 illustrates the variation of the x-

component of velocity with time for one of the locations at the top wall and the 

variation of volume averaged temperature with time. 
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Figure 11: Variation of Volume averaged temperature with time, and  

Variation of x-component of velocity at top wall (0.5,1,1) with time 

 

5. Conclusion  

This report has shown the applications of ‘codedFixedValue’ boundary 

conditions in OpenFOAM. The ‘codedFixedValue’ boundary condition offers 

significant advantages over traditional ‘fixedValue’ conditions by enabling dynamic 

control over boundary values based on user-defined code. Changing boundary 

conditions in real-time based on simulation results, and variables and implementing 

conditions that vary over time to capture transient phenomena opens doors to more 

realistic and intricate simulations. By leveraging the capabilities of ‘codedFixedValue’, 

researchers and engineers can achieve a greater degree of control over their 

OpenFOAM simulations, leading to more accurate and insightful results. 
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