
FOSSEE, IIT Bombay

OpenFOAM Case Study

December 10, 2021

Pollutant Dispersion Modelling using CFD: A

walkthrough of solver development in

OpenFOAM

Binayak Lohani
Department of Mechanical and Aerospace Engineering

Pulchowk Campus,Nepal

Abstract

Alarming increase of the hazardous pollutants in the major South Asian cities such as Kath-

mandu, Delhi, Mumbai, etc risks the life of every individuals there. The situation worsens espe-

cially, in the winters rising the air quality index to life-risking situations. A proper scientific study

and modelling of the pollutants is necessary in order to properly manage the pollution. A major

source in the production of such harmful pollutants are from the vehicles and industries. A Com-

putational Fluid Dynamics approach is proposed to model the pollutants using different turbulence

models. The primary aim of the study is to develop a turbulent steady state solver for a passive

transport of pollutants. The work is validated with the CEDVAL experiment which was conducted

at Hamburg University. k− ε model better predicts the dispersion of the pollutant than k− ω SST

turbulence model which over predicts the behaviour.

1 Introduction

Air pollution is one of the major challenges humankind is facing in the 21st century. Dispersion

of pollutant is most due to the exhaust of vehicles and factories. Rapid urbanization of cities risks

the life of many people due to increase in the air pollution. Urbanization also leads to the increase

in the amount of traffic vehicles around the city area which impacts the air pollution. Air quality

index (AQI) is represented by particulate matter (PM2.5 and PM10) i.e. particle with size less that

2.5mm and 10mm respectively. Cities in South Asian region has been facing an alarming increase

in AQI along with China. Among 100 of the most polluted cities, 94 alone lies in India, China and

Pakistan(Aljazeera (2021)).

Involvement of atmospheric flows and urban wind flow around building increases the com-

plexity of the flow problem (Schatzmann et al. (2010)). A combination of solver that solves Navier

Stokes equation with the passive scalar transport equation is appropriate to solve a pollutant disper-

sion problem (Yoshie et al. (2010)). Reynolds averaged Navier Stokes(RANS) turbulence closure

model was used to strike a balance between accuracy and computational cost. Hence, k − ε and

OpenFOAM Case Study FOSSEE, IIT Bombay

k−ωSST models were compared against the experimental results at CEDVAL for a single isolated

building. Previous studies include the use of Gaussian Plume model to predict the dispersion of

pollutant from a particular source. However, this approach is unable to predict complex flow envi-

ronments with turbulent phenomenon. An opensource software OpenFOAM-v2012 was employed

for the development of the solver and simulating dispersion of the pollutant.

2 Problem Statement

Modelling of the emissions of the pollutant dispersion from any kind of sources as explained

above requires a suitable model development in OpenFOAM. The pollutant such as CO2,N0x,etc
was assumed as a scalar quantity which was being transported through air medium. The scalar acts

as passive field which does not actively react or affect the wind flow from farfield. Hence, a passive

scalar transport equation was incorporated into the steady state solver simpleFoam. Along with it,

a turbulent Schmidt number was added as input which plays significant role in the diffusion of the

passive scalar term.

A model which is used to validate the solver is shown in figure 1. An isolated single building

with four emission sources assumed as pollutant from the garage is used.

Figure 1: Geometry of CEDVAL A1-5 building (Longo et al. (2019))

Table 1: Dimensions of the configuration (in m)

Length (x) Width (y) Height (z)

Building 0.1 0.15 0.125

Fluid domain 2.15 1 0.66

The non-dimensionalization of the co-ordinate axes was implemented as:

X =
x

H
, Y =

y

H
, Z =

z

H
(1)

where, H = height of the building (0.125m)

2

OpenFOAM Case Study FOSSEE, IIT Bombay

3 Governing Equations and Models

Considering the incompressible effect of the fluids, Navier Stokes equation is discretized using

the Finite Volume technique. The combination of mass and momentum equation contributes as NS

equation whose mathematical formulation is given as (2) and (3) respectively.

∂uj

∂xj

= 0 (2)

∂ui

∂t
+

∂ (uiuj)

∂xj

= −∂P

∂xi

+
1

Re

∂ (τij)

∂xj

(3)

Since simpleFoam solver is a steady state solver, the temporal derivative term vanishes. How-

ever, time is represented with the iteration numbers and not in the real and physical sense. Now,

scalarTransportFoam solver which is generally used for the transport of the passive scalar term has

the equation as shown in equation 4.

∂T

∂t
=

∂
(
Deff

∂T
∂xi

)
∂xi

− ∂(uic)

∂xi

+ Sc (4)

T represent the scalar parameter or concentration of the pollutant. Deff is the diffusivity term

which is the overall sum of molecular diffusivity (D) and eddy diffusivity (Dt). Eddy diffusivity

is the ratio of turbulent viscosity to turbulent Schmidt number. The definition of total diffusivity is

given in equation 5.

Deff = D +
νt
Sct

(5)

where Sct=Schmidt number.

4 Solver Development

A combination of simpleFoam and scalarTransportFoam constitutes for the development of

turbScalarTransportSimpleFoam. For the dispersion of the pollutant, a variable T denoting its

concentration in ppm is represented in the solver. T acts as a passive scalar which is transported in

a turbulent environment without being actively involved in the physics of the flow. Hence, passive

in a sense that the chemical compound comprising the pollutant does not actively react with the

ambient air.

The code turbScalarTransportSimpleFoam.C calls for the header files of each variable param-

eters such as U, p and T header files. These header file contains all the necessary equations and

definitions for solving the problem. And, finally createFields.H is required to read all the nec-

essary input parameters from the user in /constant/transportProperties folder. simpleFoam solver

present in the /applications/solver/simpleFoam was customized in a way so that the scalar transport

equation was entered in the respective manner as shown below:

3

OpenFOAM Case Study FOSSEE, IIT Bombay

4.1 turbScalarTransportSimpleFoam.C

/*---*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

Copyright (C) 2011-2017 OpenFOAM Foundation

License

This file is part of OpenFOAM.

Application
turbScalarTransportSimpleFoam

Description
This is a combination of two solvers i.e. scalarTransportFoam and simpleFoam for the turbulent transport
of the scalars. The code developed is used for a passive transport of the pollutants such as CO, COx, NOx,
etc . Hence, the solver aims to model the pollutant dispersion phenomenon using CFD techniques in
opensource software OpenFOAM.

---/

#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "turbulentTransportModel.H"
#include "simpleControl.H"
#include "fvOptions.H"

// * //

int main(int argc, char *argv[])
{

argList::addNote
(

"Steady-state solver for incompressible, turbulent flows."
);

#include "postProcess.H"
#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createMesh.H"

4

OpenFOAM Case Study FOSSEE, IIT Bombay

#include "createControl.H"
#include "createFields.H"
#include "initContinuityErrs.H"

turbulence->validate();

// * //

Info<< "\nStarting time loop\n" << endl;

while (simple.loop())
{

Info<< "Time = " << runTime.timeName() << nl << endl;

// --- Pressure-velocity SIMPLE corrector
{

#include "UEqn.H"
#include "pEqn.H"

}

laminarTransport.correct();
turbulence->correct();

#include "TEqn.H"

runTime.write();

runTime.printExecutionTime(Info);
}

Info<< "End\n" << endl;

return 0;
}

// *** //

4.2 UEqn.H

// Momentum predictor

MRF.correctBoundaryVelocity(U);

tmp<fvVectorMatrix> tUEqn

5

OpenFOAM Case Study FOSSEE, IIT Bombay

(
fvm::div(phi, U)

+ MRF.DDt(U)
+ turbulence->divDevReff(U)
==

fvOptions(U)
);
fvVectorMatrix& UEqn = tUEqn.ref();

UEqn.relax();

fvOptions.constrain(UEqn);

if (simple.momentumPredictor())
{

solve(UEqn == -fvc::grad(p));

fvOptions.correct(U);
}

4.3 pEqn.H

{
volScalarField rAU(1.0/UEqn.A());
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
surfaceScalarField phiHbyA("phiHbyA", fvc::flux(HbyA));
MRF.makeRelative(phiHbyA);
adjustPhi(phiHbyA, U, p);

tmp<volScalarField> rAtU(rAU);

if (simple.consistent())
{

rAtU = 1.0/(1.0/rAU - UEqn.H1());
phiHbyA +=

fvc::interpolate(rAtU() - rAU)*fvc::snGrad(p)*mesh.magSf();
HbyA -= (rAU - rAtU())*fvc::grad(p);

}

tUEqn.clear();

// Update the pressure BCs to ensure flux consistency
constrainPressure(p, U, phiHbyA, rAtU(), MRF);

// Non-orthogonal pressure corrector loop

6

OpenFOAM Case Study FOSSEE, IIT Bombay

while (simple.correctNonOrthogonal())
{

fvScalarMatrix pEqn
(

fvm::laplacian(rAtU(), p) == fvc::div(phiHbyA)
);

pEqn.setReference(pRefCell, pRefValue);

pEqn.solve();

if (simple.finalNonOrthogonalIter())
{

phi = phiHbyA - pEqn.flux();
}

}

#include "continuityErrs.H"

// Explicitly relax pressure for momentum corrector
p.relax();

// Momentum corrector
U = HbyA - rAtU()*fvc::grad(p);
U.correctBoundaryConditions();
fvOptions.correct(U);

}

4.4 TEqn.H

{
volScalarField DTT ("DTT", DT + turbulence->nut()/Sct) ;

while (simple.correctNonOrthogonal())
{

fvScalarMatrix TEqn
(

fvm::ddt(T)
+ fvm::div(phi, T)
- fvm::laplacian(DTT, T)

==
fvOptions(T)

);

TEqn.relax();

7

OpenFOAM Case Study FOSSEE, IIT Bombay

fvOptions.constrain(TEqn);
TEqn.solve();
fvOptions.correct(T);

}

4.5 createFields.H

{

Info<< "Reading field p\n" << endl;
volScalarField p
(

IOobject
(

"p",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE

),
mesh

);

Info<< "Reading field T\n" << endl;
volScalarField T
(

IOobject
(

"T",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE

),
mesh

);

Info<< "Reading field U\n" << endl;
volVectorField U
(

IOobject
(

"U",
runTime.timeName(),

8

OpenFOAM Case Study FOSSEE, IIT Bombay

mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE

),
mesh

);

Info<< "Reading transportProperties\n" << endl;

IOdictionary transportProperties
(

IOobject
(

"transportProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE

)
);

Info<< "Reading Schmidt number Sct\n" << endl;

dimensionedScalar Sct
(

"Sct", dimless, transportProperties
);

Info<< "Reading diffusivity DT\n" << endl;

dimensionedScalar DT
(

"DT", dimViscosity, transportProperties
);

#include "createPhi.H"

label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell(p, simple.dict(), pRefCell, pRefValue);
mesh.setFluxRequired(p.name());

9

OpenFOAM Case Study FOSSEE, IIT Bombay

singlePhaseTransportModel laminarTransport(U, phi);

autoPtr<incompressible::turbulenceModel> turbulence
(

incompressible::turbulenceModel::New(U, phi, laminarTransport)
);

#include "createMRF.H"
#include "createFvOptions.H"

4.6 /system/controlDict/

{

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: v2006
\\ / A nd	Website: www.openfoam.com
\\/ M anipulation	
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
object controlDict;

}
// * //

application turbScalarTransportSimpleFoam ;

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 2000;

deltaT 1;

writeControl timeStep;

10

OpenFOAM Case Study FOSSEE, IIT Bombay

writeInterval 100;

purgeWrite 0;

writeFormat binary;

writePrecision 6;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

// adjustTimeStep yes;

// maxCo 1;

functions
{

tTransport
{
type scalarTransport;
libs ("solverFunctionObjects");
resetOnStartUp no;
field T;
schemesField U;

fvOptions
{

tSource
{
type scalarFixedValueConstraint;
enabled true;

scalarFixedValueConstraintCoeffs
{
selectionMode cellSet;
cellSet selectedCells;

volumeMode specific;

11

OpenFOAM Case Study FOSSEE, IIT Bombay

fieldValues
{
T 1;

}
}

}
unitySource

{
type scalarSemiImplicitSource;
enabled true;

scalarSemiImplicitSourceCoeffs
{

selectionMode cellSet;
cellSet selectedCells;
volumeMode specific;
injectionRateSuSp
{

T (0.096 0);
}

}
}

}

}

}

// *** //

The source of pollutant assumed to be a garage emission at the bottom leeward side of the

building is taken into account in /system/controlDict. fvOptions was used to define the source term

of all four source element with 0.024g/s emission rate of each of them. Overall the rate was summed

up to 0.096g/s. And, the concentration of the source term was defined as 1 ppm(part per million)

in the same file.

12

OpenFOAM Case Study FOSSEE, IIT Bombay

5 Simulation Procedure

5.1 Geometry and Mesh

The domain consists of an isolated cuboid building. The fluid domain around the building

is generated using blockMesh meshing utility of OpenFOAM. The dimension of the blockMesh

geometry is given in table 1.

Next, the CAD model of the building was imported into the OpenFOAM folder. Further, grid

generation was accomplished using snappyHexMesh. SnappyHexMesh is another inbuilt mesher

of OpenFOAM which is very useful in constructing especially hexahedral cells in the periphery of

the complex watertight geometry from CAD. Hence, the parameters used in snappyHexMesh dict

are input so that good quality mesh are used during the simulation. y+ value 30 was used at the near

walls of the building. 167,576 were the hexahedral mesh elements, 624 were prisms and finally,

14047 represent the polyhedral mesh elements constituting 182,249 total number of cells.

(a)
(b)

Figure 2: Mesh configuration of the domain

5.2 Initial and Boundary Conditions

A suitable boundary condition is vital for the case study to depict the real world problem. A

passive scalar quantity (T) is introduced in the 0 folder for initialization of the pollutant.

5.2.1 Inflow boundary condition

Depicting a real world scenario, we require a parabolic nature of the inlet velocity at the farfield.

Atmospheric boundary layer concept was introduced so that the inlet velocity profile matches with

the experimental condition conducted at lab. atmBoundaryLayerInletVelocity is an inbuilt bound-

ary condition in OpenFOAM-v2012 that follows the same concept as discussed above. For the

initialization of this particular condition, following parameters needs an input data:

U* is the friction velocity. Z0 is the roughness length Uref is the reference velocity at given
height Zref.

13

OpenFOAM Case Study FOSSEE, IIT Bombay

5.2.2 Numerical boundary condition

Furthermore, other boundary condition which requires to be initialized at the beginning is given

a detailed information in table 2-8

Table 2: Boundary condition for U

Patch Condition Value (ms−1)

Inlet atmBoundaryLayerInletVelocity (0, 0, 0)

Outlet pressureInletOutletVelocity (0, 0, 0)

ground noSlip -

building noSlip -

frontAndBack symmetry -

Table 3: Boundary condition for p

Patch Condition Value (m2s−2)

Inlet zeroGradient -

Outlet totalPressure uniform 0

ground zeroGradient -

building zeroGradient -

frontAndBack symmetry -

Table 4: Boundary condition for nut

Patch Condition Value (m2s−1)

Inlet calculated uniform 0

Outlet calculated uniform 0

ground nutkWallFunction uniform 0

building nutkWallFunctiont uniform 0

frontAndBack symmetry -

Table 5: Boundary condition for k

Patch Condition Value (m2s−1)

Inlet atmBoundaryLayerInletK uniform 0

Outlet inletOutlet uniform 0.4

ground kqRWallFunction -

building kqRWallFunction -

frontAndBack symmetry -

14

OpenFOAM Case Study FOSSEE, IIT Bombay

Table 6: Boundary condition for omega

Patch Condition Value

Inlet atmBoundaryLayerInletOmega uniform 0

Outlet inletOutlet uniform 1.78

ground omegaWallFunction -

building omegaWallFunction -

frontAndBack symmetry -

Table 7: Boundary condition for epsilon

Patch Condition Value

Inlet atmBoundaryLayerInletEpsilon uniform 0

Outlet inletOutlet uniform 0.064

ground epsilonWallFunction -

building epsilonWallFunction -

frontAndBack symmetry -

Table 8: Boundary condition for T

Patch Condition Value

Inlet fixedValue uniform 0

Outlet zeroGradient -

ground zeroGradient -

building zeroGradient -

frontAndBack symmetry -

15

OpenFOAM Case Study FOSSEE, IIT Bombay

5.3 Solver

5.3.1 Numerical Solvers

Discretization of the NS equation into Finite Volume method requires a reliable solver for the

effective and accurate problem solving. Along with it, the pressure-velocity coupling is another

challenging aspect to be dealt with for the incompressible flows. Therefore, the solvers used for

solving the Navier Stokes equation into the domain of interest are explained in table (9). Since, a

steady state case was solved for the validation of the case study forward time marching scheme or

solver need not to be defined.

Table 9: Numerical Solvers

Field Linear Solver Smoother Tolerance

U Smooth Solvers Gauss Seidel

Smoother

1e-06

p GAMG Solver Gauss Seidel

Smoother

1e-05

nut Smooth Solvers Gauss Seidel

Smoother

1e-06

k Smooth Solvers Gauss Seidel

Smoother

1e-06

omega Smooth Solvers Gauss Seidel

Smoother

1e-06

T Smooth Solvers Gauss Seidel

Smoother

1e-06

6 Results and Discussions

6.1 Mesh Sensitivity Analysis

Optimal number of mesh elements required to accurately and efficiently solving a given prob-

lem is an important aspect. Three different mesh configurations were constructed and the results

were therefore, compared among them. M1, M2 and M3 are the number of cells generated using

snappyHexMesh. The case with M2 mesh configuration was approached for further analysis.

Table 10: Mesh Sensitivity Analysis

Mesh configuration Number of cells

M1 28,197

M2 182,249

M3 323,176

16

OpenFOAM Case Study FOSSEE, IIT Bombay

Figure 3: Mesh sensitivity Analysis

6.2 Validation of Atmospheric Boundary Layer boundary condition with

the experiment

Implementation of atmospheric boundary layer boundary condition, scales the complexity of

the problem. As explained above in section 5.2.1, the value of the required parameters set as

boundary condition in OpenFOAM is shown in table 11.Therefore, with the given configuration,

the inlet velocity profile is plotted against the height of the building. It can be concluded that the

implemented boundary condition is validated with the experimental result from figure 4.

Table 11: Atmospheric Boundary Layer input parameters

Parameters Value

Uref 5.6

Zref 0.66

z0 0

6.3 Comparison between experimental and computational results

The case was run for 2000 iterations with residuals equivalent to 1e-04. However, due to no

significant changes in the results, the case was not iterated furthermore for full convergence. Ex-

periment conducted at Compilation of Experimental Data for Validation of Microscale Dispersion

Models (CEDVAL) at Hamburg University was employed for the validation of the case study. A1-

5 case using dispersion around a rectangular building is considered a standard for the verification

of the dispersion model being developed. The non-dimensional number (K) was used to define the

characteristics of the pollutant in the flow environment given as:

17

OpenFOAM Case Study FOSSEE, IIT Bombay

Figure 4: Velocity Profile of Atmospheric boundary layer

K =
Tm

Ts
UrefH

Qs

(6)

where,

Tm=measured concentration in ppm

Ts=source concentration in ppm

Uref=reference velocity at given height

H=Height of the building

Qs=Source flow rate inm3/s

The graph is plotted along longitudinal(x) and vertical(z) direction at various different locations.

It was seen that k − ε predicted closely to the experimental result than k − ωSST model which

over-estimates the parameter K in different location of the setting.

(a) Z = 0.08 (b) Z = 0.64 (c) Z = 1

Figure 5: Comparision of K along X

18

OpenFOAM Case Study FOSSEE, IIT Bombay

(a) X = 0.96 (b) X = 2 (c) X = 2.96

Figure 6: Comparision of K along Z

6.4 Contours of flow parameters

(a) Velocity at yz plane (b) Pressure at yz plane

(c) Concentration at yz plane

Figure 7: Contours of velocity, pressure and concentration (T) respectively

7 Conclusion and Future Works

The simulation performed for two different RANS turbulence closure models address that k−ε
model closely validate with the experimental wind tunnel result than k − ω SST model. Concen-

tration of the pollutants seem to diffuse less in the vertical direction and convects more towards

the urban wind. A classical approach of using Gaussian plume model for modelling the pollutant

dispersion cannot solve the flow problem with complex urban environment. Hence, CFD may

play important role so that any urban environment can be accurately modelled using sophisticated

19

OpenFOAM Case Study FOSSEE, IIT Bombay

(a) Concentration at xy plane at Z=0.16 (b) Concentration at xy plane at Z=1

Figure 8: Contours of concentration (T) at xy plane

RANSmodel. However, LES and DNS approaches can also be used considering the computational

cost and required degree of accuracy. Nonetheless, RANS approach is proven to be appropriate to

strike the balance between both parameters.

Further, the work can be developed to solve complex urban environment of a particular city.

Along with it, study on the dependance of the turbulent Schmidt number in different flow settings

is the direction path a researcher might follow up on the future. An appropriate modelling of

dispersion of pollutant helps in the prediction and management of the air pollution.

References

Aljazeera (2021). Air quality index. (https://www.aljazeera.com/news/2021/11/22/
infographic-the-worlds-100-most-polluted-cities-interactive.

Longo, R., Fürst, M., Bellemans, A., Ferrarotti, M., Derudi, M., and Parente, A. (2019). Cfd dis-

persion study based on a variable schmidt formulation for flows around different configurations

of ground-mounted buildings. Building and Environment, 154.

Schatzmann, M., Olesen, H., and Franke, J. (2010). COST 732 model evaluation case studies:

approach and results.

Yoshie, R., ABE, S., and IIZUKA (2010). The fifth international symposium on computational

wind engineering. Wind Engineers, JAWE, 35:347–363.

20

