
FOSSEE, IIT Bombay

OpenFOAM Case Study Project

August 1, 2021

1

Rising Bubble with Mass Transfer using interFoam

Mano Prithvi Raj R

Velammal Engineering College, Chennai, Tamil Nadu

Abstract

The main focus of this case study is to extend interFoam, a two-phase simulation solver in

OpenFOAM, such that it accepts a user-defined mass transfer rate between the said phases and

allows mass transfer to occur between the two phases. Validation of the solver is done using

the sucking interface problem to validate phase change, and is then executed to simulate a

bubble rising in a column of a miscible fluid, where a vapour bubble undergoes condensation.

1. Introduction

The rising bubble simulation is a benchmark case study used to study interfacial flows and to

validate the interface capturing ability of multiphase solvers. One of these solvers is

OpenFOAM’s interFoam. However, majority of these studies assume flow to be immiscible.

However, there are a number of case studies, especially in the nuclear and energy industries,

where condensing and evaporating flows need to be validated. In these flows, the fluids are

miscible and there is a transfer of mass between the phases.

On its own, the interFoam solver does not take the mass transfer between the fluids in a

simulation into account, that is, the solver can only be used to solve problems that are

immiscible in nature. A modification to the governing can be made so that the interFoam solver

can more versatile and can be applied to a number of multi-phase problems that involve

immiscible phases and interfacial mass transfer. Appropriate source terms are added to the

necessary equations and the new solver’s ability to simulate mass transfer between two phases

by solving the one-dimensional sucking interface problem.

The new solver is named and compiled as “interMassFoam”.

FOSSEE, IIT Bombay OpenFOAM Case Study Project

2

2. Problem Statement

The simulation starts with a bubble of one phase submerged in a column filled with another

phase. During the simulation, the bubble should rise upwards with time. Isothermal conditions

and miscible components are assumed. A constant mass transfer rate has been defined

explicitly, whose value needs to be provided by the user. It is expected that the bubble should

mix with the fluid surrounding it during the movement. But before the bubble case, the working

of the modified solver is validated using the sucking interface problem. The solver works on

the assumptions that flow is incompressible, isothermal and the fluid is Newtonian.

3. Governing Equations:

3.1 interFoam Governing Equations:

3.1.1. Continuity Equation:

∂𝜌

∂𝑡
+ ∇. (𝜌𝑼) = 0 (1)

This is the global continuity equation. Mass is conserved throughout the simulation.

3.1.2. Momentum Equation:

∂(ρ𝑼) ∂t + ∇ · (ρ𝑼𝑼) − ∇ · (µ(∇𝐔 T + ∇𝑼)) = −∇P + ρ𝒈 + 𝝈 𝜅∇α𝐿 (2)

The last term on the right-hand side of the momentum equation indicates the surface tension

between two phases. The surface tension is computed using the Continuum Surface Tension

(CSF) model. 𝜎 is the surface tension coefficient and 𝜅 is the curvature.

3.1.3. Volume Fraction Transport Equation:

The volume fraction derivation begins with how thermophysical properties, in this case the

density, are defined. The average density 𝜌 in a cell is calculated as:

𝜌 = αρ𝐿 + (1 − α)𝜌𝑉 (3)

where 𝛼𝐿 is the volume fraction, whose value distinguishes the two phases at position 𝑥 and

time 𝑡:

α(𝑥, 𝑡) = {
1, 𝑥 ∈ Ω𝐿

0, 𝑥 ∈ Ω𝑉
 (4)

FOSSEE, IIT Bombay OpenFOAM Case Study Project

3

where 𝛺𝐿 and 𝛺𝐺 are the domains pertaining to phases L (liquid) and V (vapour).

On substituting the average density equation into the continuity equation (Eqn. 1), we get:

∂

∂𝑡
(αρ𝐿 + (1 − α)𝜌𝑉) + ∇ · (αρ𝐿 + (1 − α)𝜌𝑉)𝑼 = 0 (5)

This is where the mass transfer rate is introduced. Separate equations are written for liquid and

vapour phases’ continuity equations.

{

∂

∂𝑡
(αρ𝐿) + ∇ · (αρ𝐿)𝑼 = −ṁ

∂

∂𝑡
(αρ𝑉) + ∇ · ((1 − α)ρ𝑉)𝑼 = ṁ

 (6)

where ṁ is the mass transfer rate and the unit is kg/m3s. The signage, in theory, indicates the

direction of mass transfer relative to the phases. The value of mass transfer can be determined

by using additional transport equations, such as a temperature or an energy equation and in that

case, the positive value of ṁ will indicate boiling, and a negative value will indicate

condensation. On further simplification:

{

∂α

∂𝑡
+ ∇ · (α𝑼) = −ṁ

1

ρ𝐿

−
∂α

∂𝑡
− ∇ · (α𝑼) + ∇ · 𝑼 = −ṁ

1

ρ𝐿

 (7)

The first equation is used as the governing equation for the volume fraction equation.

∂α

∂𝑡
+ ∇ · (α𝑼) = −ṁ

1

ρ𝐿
 (8)

The value of volume fraction needs to be in the range of 0 to 1. Out of bound values would

contradict the practicality of the problem’s physics. OpenFOAM solves the volume fraction

equation explicitly, using the MULES algorithm, which in principle restricts the undershooting

and overshooting of the volume fraction value.

4. Simulation Procedure

4.1 Validation of Phase Change and Interfacial Mass Transfer

The Sucking Interface problem is used to test if the modifications made to interFoam are

applied and the solver does indeed allow mass transfer and in turn, phase-change. For the sake

of testing the solver and validating the phase change, the sucking problem is taken as a one-

dimensional case. The left and right sides of the computational domain are a wall and flow

FOSSEE, IIT Bombay OpenFOAM Case Study Project

4

outlet, respectively. The vapor phase occupies the space between the wall and the interface

with the liquid phase, which is assumed to be superheated.

4.1.1 Geometry and Mesh

A simple 1 x 0.05 m2 rectangular block is taken as the geometry and meshing is done using the

blockMesh command. The mesh has 50 hexahedral cells. The phases are defined using the

setFields command.

4.1.2 Initial and Boundary Conditions:

Since the isothermal condition is assumed, the properties of the fluids are taken at 100°C.

Fluid Density (kg/m3)
Kinematic

Viscosity (m2/s)

Surface Tension

(N/m)

Water 958.40 0.29e-6

0.0059

Vapour 0.598 2.17e-5

Table 1 Properties of Fluids

Field Condition

U

Left – fixedValue (0 0 0)

Right – inletOutlet (0 0 0)

Top,Bottom, Front and Back - empty

p_rgh

Left - zeroGradient

Right – fixedValue (1e5)

Top,Bottom, Front and Back - empty

alpha.water

Left - zeroGradient

Right – zeroGradient

Top,Bottom, Front and Back - empty

Table 2 Boundary Conditons (Sucking Interface)

As for the mass transfer, an initial value of 0.005 kg/m3s is assumed. Here, alpha.water is the

phase indicator. The cells with value 1 are the ones with water, and the cells with value 0 are

vapour cells.

FOSSEE, IIT Bombay OpenFOAM Case Study Project

5

4.1.3 Results:

The interMassFoam solver was executed. The following contours are those of the volume

fraction, alpha.water. The liquid phase boils at the vapor–liquid interface, and the interface

moves to the right due to the volume expansion of the vapor.

From the contours, it is visible that there is a generation of vapour at the interface (alpha.vapour

=0.5), which pushes the water to the right side. This verifies the transfer of mass from water to

vapour.

4.2 Rising Bubble Simulation

Since the interfacial mass transfer has been implemented, the simulation of a rising vapour

bubble can be modelled using the modified solver. The vapor bubble rises due to the buoyancy,

and simultaneously shrinks as a consequence of condensation at its surface.

4.2.1 Initial and Boundary Conditions:

The fluid properties are the same as those in the sucking interface problems.

Field Condition

U

Atmosphere– pressureInletOutletVelocity (0 0 0)

Bottom – noSlip

Walls - slip

Front and Back - empty

p_rgh

Atmosphere – totalPressure 0

Bottom – zeroGradient

Walls - zeroGradient

Front and Back - empty

alpha.vapour
Atmosphere, Bottom, Walls – zeroGradient

Front and Back - empty

 Table 3 Boundary conditions for Rising Bubble Case

Figure 1 t=0 sec

Figure 2 t = 10 sec

FOSSEE, IIT Bombay OpenFOAM Case Study Project

6

Figure 3 Domain for the rising bubble simulation

Similar to the sucking interface problem, the isothermal condition is assumed. The properties

are taken at 100°C. Here, alpha.vapour is the phase indicator.

4.2.2 Geometry and Mesh

The two-dimensional geometry is straightforward. At the first timestep, a vapour bubble of

diameter 0.04 m is in the middle of a 0.5 m x 0.5 m domain, completely filled with water. The

properties of vapour and water are the same as those in Table 1. Meshing is done using the

blockMesh command. There are 40,000 hexahedral cells in the domain. The phases are defined

using the setFields command.

4.2.3 Case 1: ṁ = 0.025 kg/m3s:

Two simulations were run with different values of ṁ. In case 1, the value of mass transfer rate

is 0.025 kg/m3s.Visibly, it can be observed that the bubble of the simulation with the higher ṁ

value has reduced in size. This clearly indicates the increased rate of mass transfer between the

phases. The simulation is run for 0.6 sec.

4.2.4 Case 2: ṁ = 0.05 kg/m3s:

In case 2, the value of ṁ is 0.05 kg/m3s, which is twice the value of the mass transfer rate in

case 1. Therefore, a visible reduction in bubble size is expected at the same timestep as that of

case 1. The contours of alpha.vapour for both cases are captured at 0.5 sec.

FOSSEE, IIT Bombay OpenFOAM Case Study Project

7

5. Results and Discussion

The new solver, interMassFoam, was modified, compiled and executed for two problems. Mass

transfer between phases and phase change were validated using the sucking interface problem,

in which vapour generation at the interface was noted. In the rising bubble simulation, two

cases of condensing vapour bubbles with similar initial conditions, but with different mass

transfer values, are simulated. The vapour bubble from the simulation with a higher mass

transfer rate value is visibly smaller at the same timestep.

6. Conclusions:

The mass transfer rate was defined explicitly. This solver can be extended further, by defining

a transport equation for temperature, from which the value of mass transfer can be calculated

and implemented in OpenFOAM using custom libraries. This solver can be applied to a variety

of problems, including and not limited to study of condensing and boiling flows, species

tracking and biological applications. Specifically, this solver could be extended appropriately

to be used in reactor safety studies.

Figure 4 Case 1 ṁ= 0.025 kg/m3s Figure 5 Case 2: ṁ = 0.05 kg/m3s

FOSSEE, IIT Bombay OpenFOAM Case Study Project

8

Bibliography

1. G. Giustini, R. I. Issa, M. J. Bluck (2020) “A method for simulating interfacial mass

transfer on arbitrary meshes” arXiv:2012.13759

2. N. Samkhaniani, M.R. Ansari, “Numerical simulation of superheated vapor bubble rising

in stagnant liquid “, DOI:10.1007/s00231-017-2031-6

3. S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan, L. Tobiska (2008)

“Quantitative benchmark computations of two-dimensional bubble dynamics”,

DOI:10.1002/fld.1934

4. H Jasak, 1996 “Error analysis and estimation for the finite volume method with

applications to fluid flows”

https://spiral.imperial.ac.uk/bitstream/10044/1/8335/1/Hrvoje_Jasak-1996-PhD-

Thesis.pdf

5. OpenFOAM User Guide, https://www.openfoam.com/documentation/user-guide

Appendix:

1. How to install interMassFoam:

1. In your WSL/Linux terminal, go to the location where the interMassFoam files are

downloaded

2. Run the command: wmake

The solver will be installed in the $FOAM_USER_APPBIN directory

2. How to run interMassFoam:

1. Since the solver cannot calculate the mass transfer rate, it has to be defined by the user

in the massTransfer file in the cases /constant directory.

2. The mass transfer rate is in kg/m3s. In ensure stability of the solver, realistic values need

to be provided.

3. Run blockMesh command.

4. Run setFields command.

5. Run interMassFoam.

6. Post processing can be visualized on Paraview.

3. interMassFoam files - alphaSuSp.H:

0 zeroField Su;

1 zeroField divU;

2 volScalarField Sp ("Sp", ((1.0/rho1 * mdot)/(alpha1 + SMALL)));

3 forAll(alpha1,celli)

4 {

5 if(alpha1[celli]==0 && alpha1[celli]==1)

6 {

7 Sp[celli] = 0;

8 }

9 }

https://www.openfoam.com/documentation/user-guide

FOSSEE, IIT Bombay OpenFOAM Case Study Project

9

3. interMassFoam files - createFields.H:

43 /*---*/

44 /* Mass Transfer Directory */

45 /*---*/
46

47 Info<< "Reading massTransfer\n" << endl;

48

49 IOdictionary massTransfer

50 (

51 IOobject

52 (

53 "massTransfer",

54 runTime.constant(),

55 mesh,

56 IOobject::MUST_READ_IF_MODIFIED,

57 IOobject::NO_WRITE

58)

59);

60

61

62 Info<< "Reading mdot\n" << endl;

63

64 dimensionedScalar mdot

65 (

66 massTransfer.lookup("mdot")

67);

68

69 /*---*/

70 /* Mass Transfer Directory */

71 /*---*/

5. interMassFoam files - pEqn.H:

41 while (pimple.correctNonOrthogonal())

42 {

43 fvScalarMatrix p_rghEqn

44 (//source term added here

45 fvm::laplacian(rAUf, p_rgh) == fvc::div(phiHbyA) - mdot*(1.0/rho1 -1.0/rho2)

46 //end);

47

48 p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));

49

50 p_rghEqn.solve();

51

52 if (pimple.finalNonOrthogonalIter())

53 {

54 phi = phiHbyA - p_rghEqn.flux();

55 p_rgh.relax();

56

57 U = HbyA + rAU()*fvc::reconstruct((phig - p_rghEqn.flux())/rAUf);

58 U.correctBoundaryConditions();

59 fvOptions.correct(U);

60 }

61 }

