

Prediction of cavitation over hydrofoil using RANS

Barani Ilango Balan

B. Tech in Mechanical Engineering

Manipal Institute of Technology, Manipal

Under the guidance of

Dr Sathi Rajesh Reddy

Department of Mechanical Engineering, Shiv Nadar University, Delhi

Pranay Pandey

FOSSEE, IIT Bombay, Mumbai

Abstract

This study presents a numerical investigation of cavitation over a NACA 0012 hydrofoil using the interPhaseChangeFoam solver in OpenFOAM. The hydrofoil, with a chord length of 0.1 m, is simulated in a C-type computational domain created in Gmsh. A two-phase homogeneous mixture model is employed along with the Schnerr & Sauer cavitation model to capture vapor formation and collapse. The k- ϵ turbulence model is used to resolve turbulent effects, and mesh refinement near the hydrofoil surface ensures accurate boundary layer resolution. Simulations are carried out for two cases: steady cavitation at 4° angle of attack and cavitation number $\sigma = 0.8$, and unsteady cloud cavitation at 7° angle of attack and $\sigma = 0.7$. The results reveal the initiation and development of cavitation from the leading edge, and the transition to cloud cavitation due to re-entrant jets.