

Numerical Simulation of Non-Newtonian Fluid Flow across a Sinusoidal Microchannel

Pranay Kumar Pandey¹

¹Dept. of Aerospace Engineering, Amity University Mumbai, Panvel, Maharashtra 410206

Mentor: Binayak Lohani²

²FOSSEE, IIT Bombay, Mumbai, Maharashtra 400076, India

Supervisor: Prof. P. R. Naren³

³School of Chemical & Biotechnology, SASTRA Deemed to be University, Tamil Nadu 613004

Abstract

Flow of non-Newtonian fluids through sinusoidal microchannels is studied in the current work. The work aims to simulate different flow features such as velocity profile, pressure gradient, viscosity profile in flow of non-Newtonian fluid through a sinusoidal microchannel. The work is motivated by the growing interest in designing efficient microfluidic devices that can handle complex fluids, such as biological fluids, polymer solutions, and suspensions (Nguyen & Nguyen, 2012). Understanding the flow characteristics of such fluids in microchannels provides valuable insights into optimizing microchannel design for specific applications. The geometry under consideration is adopted based on Mondal et al. 2019 (Figure 1) and the fluid system used for the simulation study are presented in Table 1

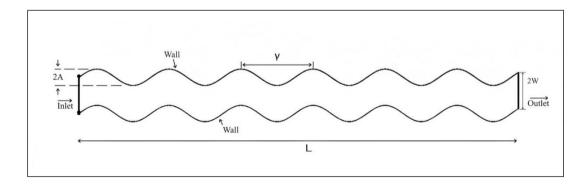


Figure 1: Schematic Sketch of the geometry

Fluid	Density (kg/m ³)	K (Pa.s ⁿ)	n (-)
Blood	1060	0.004	0.90
Cellulose	1006	0.025	0.82
Xanthan Gum	1143	0.55	0.39
Crude Oil	970	2.8811	0.9305
Printer Ink	1220	3.783	0.7925

Table 1: Details of non-Newtonian Fluids

References

- Mondal, B., Mehta, S.K., Patowari, P.K. and Pati, S. (2019). Numerical study of mixing in wavy micromixers: comparison between raccoon and serpentine mixer. *Chemical Engineering and Processing Process Intensification*, 136, 44–61.
- Nguyen Q-H and Nguye N-D (2012) Incompressible Non-Newtonian Fluid Flows. In *Continuum Mechanics - Progress in Fundamentals and Engineering Applications*, Eds. Gan Y. X., 47 - 71