

The Effect of Flexible Flaps on the flow dynamics of a Stalled Airfoil

Sambhav Sahani¹ and Chandan Bose²

¹UG Research Scholar, Dept. of Mechanical and Aerospace Engineering, Tribhuvan University, IOE, Pulchowk Campus
²Assistant Professor, Aerospace Engineering, School of Metallurgy and Materials, The University of Birmingham

August 8, 2023

Synopsis

The operational limit of Micro Aerial Vehicles (MAVs) can be extended by delaying flow separation using biomimetic methodology inspired by secondary covert feathers of a bird's wings that appear on the upper surface during high angle-of-attack maneuvers or sudden gusts. This is canonically modelled as a flexible flap on the upper surface of an airfoil in the present study. This study sets up a case for fluid-structure interaction (FSI) simulation of a flexible flap on the surface of a NACA0012 airfoil at an angle-of-attack of 45° and Reynolds Number of 1000. The present open-source FSI framework comprises a finite volume method based incompressible flow solver 'pimpleFoam' available in OpenFOAM, a finite element method based structural solver CalculiX, and a coupling platform preCICE. For the coupling of the fluid and the solid solvers, a parallel-implicit scheme is used with nearest neighbor mapping technique. Three different flap positions, 10% chord, 50% chord, and 90% chord, were studied. Among the three, comparing the mean drag coefficient ($\overline{C_d}$), flap at 90% chord was found the most aerodynamically efficient. However, to get the optimal position of the flap, a systematic study has to be conducted comparing various flap positions in terms of generated lift and mean lift-drag ratio, among others.