Turbulent Flow in a Diffuser

Nikhil Sharma

Department of Mechanical Engineering Malaviya National Institute of Technology Jaipur, Rajasthan India

Abstract

Aim of this case study is to study turbulent flow through a diffuser using OpenFoam software. Two cases, one using Standard k- ϵ turbulence model and the other using - ω SST model needs to be used to study the problem. Numerical results such as the Velocity profile, and turbulent kinetic energy should be compared against experimental data. A 2D asymmetric diffuser is shown below in the figure. It has three major sections an inlet, an angled expansion channel and an outlet channel. The dimensions of the geometry is taken [1] as L1=60 m, H1=2 m, L2=70 m and H2=9.4 m. Flowing fluid is entering from inlet with velocity of 1.25 m/s and exiting from outlet. Fluid properties and boundary conditions are given in the table

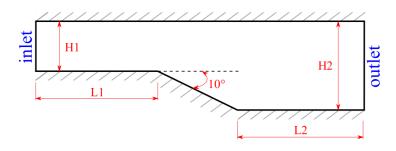


Figure 1: Geometry of the plain wall jet

Variable	Unit	Value
Velocity at Inlet(U)	ms ⁻¹	1.25
Pressure at outlet(p)	Pa	0
Density(ρ)	kgm ⁻³	1
Dyanamic viscosity(μ)	kgm ⁻¹ s ⁻¹	1.47 * 10 ⁻⁴
Turbulent Kinetic Energy (k)	$m^2 s^{-2}$	1.8 * 10 ⁻³
Turbulent Dissipation Rate (ϵ)	$m^2 s^{-3}$	9.63 * 10 ⁻⁵
Turbulent Intensity (I)	%	3.25
Turbulent Mixing Length (L)	m	3.5 * 10 ⁻³

Table 1: Fluid Properties and Turbulence Parameters

REFERENCE

1.Timur Dogan, Michael Conger, Maysam Mousaviraad, Tao Xing, Fred Stern, Simulation of Turbulent Flow in an Asymmetric Diffuser. Iowa City, IA 522421585