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ABSTRACT

The influence of transverse magnetic field on the electrically conducting fluid flow through a channel with a constriction in the middle
is studied using OpenFOAM. The effects of the Reynolds number and Hartmann number on the flow parameters are discussed.
Numerical simulations are performed using mhdFoam, an OpenFOAM solver for incompressible MHD flow. The flow is investigated
at three different Reynolds number (Re = 50, 100, 150), and four different Hartmann number (Ha = 0, 10, 20, 30) keeping the Reynolds
number and the magnetic Reynolds number constant.
It is found that the magnetic field has a controlling effect on the separation zone: as the Hartmann number is increased, the length of
the separation zone is observed to decreases. However, this controlling effect of the electromagnetic field comes with the price of an
increase in pressure drop.
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1. Introduction

Magnetohydrodynamics deals with the behaviour of the flow of
electrically conducting fluid in the electromagnetic field. Mag-
netohydrodynamics has wide application in geophysics, astro-
physics, engineering and medical field. The study of MHD flow
inside channels and pipe are rudimentary in engineering applica-
tions like in metallurgical industries, nuclear fusion reactor and
MHD power generators. And, in many such applications, devices
like orifices, valves and nozzles are present. These devices are
often used to reduce the pressure or to reduce the flow rate or
used as a flow measurement devices. Hence, the study of MHD
flow through such constricted passage forms a basis for these
engineering and scientific application.

The method of controlling flow separation using electromag-
netic forces is also a long-discussed topic. The technique of con-
trolling the flow separation on hydrofoils using electromagnetic
force was investigated by Weier et al. (2003)

Midya et al. (2003) studied the steady, incompressible, vis-
cous and electrically conducting flow through a channel with lo-
cal symmetric constriction with a shape given by Gaussian dis-
tribution y = w

2 −d×e−
( 4(x−x0)

H

)
and obtained numerical solution for

such flows. A similar problem was numerically examined using
D2Q9 lattice model and the effect of different Reynolds number,
magnetic Reynolds number, and Hartmann number were also
studied by Ghahderijani et al. (2017)

In the present work, the same case setup mentioned by
Midya et al. (2003) is solved numerically using OpenFOAM and
the effect of Reynolds number, and Hartmann number on flow
separation zone are discussed.

2. Problem definition

We consider a steady, incompressible, laminar, viscous, electri-
cally conducting fluid flow inside a channel of length, L and

width, H with the symmetric constriction of height, d placed in
the middle of the channel. The shape of the constriction is as-
sumed to be Gaussian function Ghahderijani et al. (2017). A
uniform magnetic field of strength B is applied perpendicular to
the flow direction. The walls are assumed to be perfectly con-
ducting Hartmann walls. The setup is shown in Figure 1

Fig. 1: Case Setup

The geometry consists of three parts 1) the inlet 2) the out-
let, and 3) the wall. The boundary conditions for the model are
presented in the table 1

Geometric details are: Length of the channel, L = 8 m ; Width
of the channel, w = 0.5 m ; Width of the constriction, H = 0.4 m
; Height of the constriction, d = 0.125 m

Physical properties of the working fluid are as follows:
Density, ρ = 1 kg/m3; Magnetic constant, µ0 = 1 H/m; Electrical
conductivity, σ = 10 S/m

The values of dynamic viscosity are varied for simulating
flows at different Reynolds number.

The simulations are run at three different dynamic viscosity,
µ = 0.01 kg/ms, 0.015 kg/ms, 0.03 kg/ms.
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Table 1: Boundary conditions

Pressure Velocity Magnetic Field pB
(Pascal) (m/s) (Tesla) (Teslam/s)

Inlet ∂P/ ∂z = 0 (0 0 3) (0 0 0) 0

Outlet 0 ∂V/ ∂z = 0 (0 0 0) 0

Wall ∂P/ ∂n = 0 ∂V/ ∂n =0 (0 By 0) 0

The fundamental equation governing the steady, incom-
pressible, viscous, magnetohydrodynamic flow is given by the
following equation.

1) Conservation of mass

∇.V = 0 (1)

2) Conservation of momemtum

∂V
∂t

+ ∇. (VV) − ∇.
(

1
µ0ρ

BB
)
− ν∆V + ∇

(
1

2µ0ρ
B2

)
= −∇P (2)

3) Conservation of magnetic flux

∇.B = 0 (3)

4) Magnetic induction equation

∂B
∂t

+ ∇.(VB) − ∇.(BV) − ∆

(
1
µ0σ

B
)

= 0 (4)

The Reynolds number, magnetic Reynolds number, and Hart-
mann number are defined as follows:

1. Reynolds number

Inertial f orce
Viscous f orce

= Re =
VmLc

ν
(5)

2. Magnetic Reynolds number

magnetic f ield convection
magnetic f ield di f f usion

=
µ0σ (V × B)
∇ × B

∼ Rem =
VmLc

η

(6)

where magnetic diffusivity η is defined as the ratio of
electrical resistivity to magnetic constant.

3. Hartmann number

Electromagnetic f orce
Viscous f orce

= Ha = BLc

√
σ

µ
(7)

where Lc, Vc refers to the characteristic length and charac-
teristic velocity respectivity and in this case Lc = Diameter
of the pipe and Vc = Velocity at the inlet.

Fig. 2: mhdFoam solver algorithm

The mhdFoam, a pressure-based solver, is an OpenFOAM
solver that uses magnetic induction method to solve the MHD
equations. This solver solves the governing equations using the
PISO algorithm. The magnetic induction equation is solved us-
ing PISO algorithm in a similar manner it is implemented in
solving the Navier-strokes equation. Figure 2 shows the detailed
flowchart.
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3. Mesh and grid Independence

The geometry is meshed using Gmsh, finite-element mesh gen-
erator. Grid independence study is conducted for two different
meshes. The detail of the meshes are shown in the table.

Table 2: Mesh Details

Section 1 Section 2 Section 3

Mesh no. 1 90 × 25 25 × 25 90 × 25
Mesh no. 2 180 × 50 50 × 50 180 × 50

From the graphs 3 and 4, it is observed that the velocity
and pressure are in good agreement for different meshes. Mesh
number 1 is used for further simulations.

Fig. 3: Axial variation of pressure

Fig. 4: Widthwise velocity profile at x = 4.2 cm

The 5 shows the region near constriction. As can be seen in
the figure, the mesh is refined near the wall to capture the bound-
ary layer and the number of cells in and near the constriction
region is relatively high.

Fig. 5: Mesh

4. Result and Discussion

The simulations are at three different Reynolds number (Re = 50,
100, 150) and four different Hartmann number (Ha = 0, 10, 20,
30) keeping Reynolds number and magnetic Reynolds number
constant using mesh number 1 with 10848 cells. The results are
plotted using matplotlib, python.

Figure 6 shows the streamline pattern of the flows at three
different values of viscosity i.e., three different Reynolds num-
bers. As expected, the recirculation zone length increase with
increase in Reynolds number.

(a) Re = 50

(b) Re = 100

(c) Re = 150

Fig. 6: Streamlines pattern for different Reynolds number

There is a drop in pressure at the throat of the constriction
due to Bernoulli’s effect: pressure decrease as the flow velocity
increase. As the flow enters the diverging portion of the con-
striction, the flow velocity decreases in the flow direction, and
it faces an adverse pressure gradient resulting in the reversal of
flow direction. This cause negative flow velocity near the wall of
the divergent section. Thus, The negative velocity seen in Figure
8 belongs to the recirculation zone. As the Reynolds number is
increased, the viscous force decrease relatively over the inertial
force, this decrease the momentum diffusion due to viscosity,
which in turn delays the reattachment of flow. As a result, the
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re-circulation region to grow in size.

Fig. 7: Axial variation of pressure

Fig. 8: Widthwise velocity profile at x = 4.2m

It is seen from the Figure 9 that the length of the separation
zone decreases as the Hartmann number increases and at certain
Hartmann number, the separation zone completely vanishes.
These streamline patterns are obtained using the paraView tool
called ’streamtracer’.

Fig. 10: Widthwise velocity profile at x = 4.125m

The Figure 10 shows that the widthwise velocity profile be-
comes flatter. The Lorentz force generated by the interaction be-
tween the applied and the induced magnetic field retards the flow

(a) Ha = 0

(b) Ha = 10

(c) Ha = 20

(d) Ha = 30

Fig. 9: Streamlines pattern for different Hartmann number
at Re = 150,Rem = 15

near the pipe axis; to keep the mass flow rate constant, the flow
near the wall must accelerate. This acceleration near the wall in-
creases with increase in the applied magnetic field strength. The
accelerated boundary layer flow suppresses the flow reversal and
encourage the reattachment of the flow.

Fig. 11: Axial variation of pressure

The increased velocity near the wall results in increased wall
shear stress (see Figure). The axial pressure drop increase as wall
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shear stress increases: to push the same amount of flow more
work is needed to overcome the increased shear on the wall.
Hence, the Figure 11 shows an increasing pressure difference
for increasing Hartmann number at a constant Reynolds number.

Fig. 12: Wall shear stress in the constriction region

As the Hartmann number increases, the flow in the diverg-
ing portion of the constriction is attached to the wall for slightly
longer distance. This effect can be seen the Figure 12 at approx-
imately 4.02 m, the region immediately after the throat. Since
increasing Hartmann number reduces the size of the recircula-
tion zone, the magnitude of the wall shear stress due to the neg-
ative velocity in the recirculation zone also decrease in magni-
tude. This can be seen in Figure 12. As the recirculation zone
vanishes at Ha = 30, the magnitude of the shear stress in the re-
circulation zone decreases significantly which is evident in the
red curve, however, at later distance the shear stress increases
again due to the increased velocity near the wall.

5. Tools used

Mesh generator: Gmsh
Plot generator: Matplotlib, python
Graphic editor: Inkscape
Flowchart editor: Draw.io
Latex editor: Overleaf
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Nomenclature

η Magnetic diffusivity, m2/s
B0 Applied magnetic field, Tesla
B Total magnetic field, Tesla
V Velocity, m/s
µ Dynamic viscocity, kg/ms
µ0 magnetic constant, H/m
ρ Density, kg/m3

σ Electrical conductivity, S/m
d Height of the constriction, m
H Width of the constriction, m
L Length of the channel, m
P Pressure, N/m2

Re Reynolds number
Rem Magnetic Reynolds number
w Width of the channel, m
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